## Tapia Ranch Water Supply Assignment

BOARD OF DIRECTORS MEETING

JULY 17, 2018

**IIEM** 6.1

#### Overview of Annexation Process

A

- Application/Deposit and Funding Agreement
  - Determine project demand
  - De termine BV-RRB Water Supply is a vailable

B

- Negotia te Annexa tion Agreement
- Initia te LAFCO process
- Applicant acquires entitlements/CEQA

C

- Board Approval of Annexation Agreement and conditions precedent (including DWR Approval)
- IAFCO approval

#### Tapia Canyon



#### Tapia Ranch Development Boundary



#### Re vise d Anne xa tio n Are a



#### BV-RRB Water Purchase

- ► September 2002 Final EIR by BV-RRB for project to create supply by reregulation of high flow Kern River water
- Oc to ber 2006 Final EIR by CLWA for Acquisition
  - ▶ 11,000 AF for in service area demand
  - ▶ 4,735 AF for five antic ip a ted annexations (Estimate of 750 AF for Tapia Canyon)
- May 2007 Purchase Agreement executed

#### BV-RRB Background (Continued)

- ▶ 2008 Downturn in housing market
- Only Legacy entered into Deposit and Funding Agreement
- ▶ 2008 Wanger Decision reduced SWP reliability
  - ▶ Agency reserved all BV-RRB water for in service area use
- ▶ 2012 3000 AF made available to Legacy and Tesoro Annexations
- ▶ 2014 Tapia undernew ownership approached Agency re annexation
- $\triangleright$  2016 2015 UWMP Adopted
- ▶ 2017 Deposit and Funding Agreement Executed for Tapia Canyon
- ▶ 2018 Water Resources and Watershed Committee reviewed BVRRB water supply availability

#### Water Demand Determination

- Approach
  - ► Sing le-family home demand based on lot size and demand factors from a djacent new construction
  - Common landscape areas based on developers landscape plans and current landscaping ordinances
  - ▶ Long-term estimated waterdemand of 489 AF/Yr

# Annexation Demands Included in 2015 SCV UWMP

| Annexing Development     | 2015 UWMP  | Current    |  |
|--------------------------|------------|------------|--|
| Potentially Using BV-RRB | Estim a te | Estim a te |  |
| Supplie s                | (AFY)      | (AFY)      |  |
| Legacy                   | 2,500      | 2,500      |  |
| Te so ro                 | 500        | 389        |  |
| Ta p ia                  | 575        | 489        |  |
| To ta l                  | 3,575      | 3,378      |  |

#### 2015 SCV UWMP – 2050 Water Balance

| Supply Source         | Average/<br>Normal | Sing le<br>Dry-Ye a r | 4-Year<br>Drought | 3-Year<br>Drought |
|-----------------------|--------------------|-----------------------|-------------------|-------------------|
| Existing Groundwater  | 31,545             | 40,215                | 36,175            | 35,875            |
| Existing Recycled     | 450                | 450                   | 450               | 450               |
| Existing Imported     | 70,707             | 22,087                | 45,177            | 33,167            |
| Bank/Exchanges        |                    | 7,950                 | 7,950             | 7,950             |
| Future Groundwater    | 10,230             | 20,335                | 21,875            | 21,325            |
| Future Recycled       | 9,604              | 9,604                 | 9,604             | 9,604             |
| Future Bank/Exchanges |                    | 22,000                | 22,000            | 22,000            |
| To tal Supply         | 122,536            | 122,641               | 143,231           | 130,371           |
| Demand w/ Active      | 93,900             | 103,300               | 103,300           | 103,300           |
| Conse rva tion        |                    |                       |                   |                   |
| Surplus               | 28,636             | 19,342                | 39,931            | 27,071            |

#### 2015 UWMP - Demand and Supplies



#### Water Supply Reliability Analysis

- Alternative Water Supply Scenarios can be explored by reviewing the 2017 Water Supply Reliability Report Update
- ▶ Differs from UWMP Analysis
  - ► Employs a study period of 2017-2050
  - ▶ Demands increase throughout study period
  - ► Local and imported supplies vary with hydrology
  - ► Waterbanking/exchange programs are operated through 86 hydrologic sequences
  - ▶ Provides probabilities of meeting water demands

#### Water Supply Reliability Plan Scenarios Evaluated

#### BASE SCENARIO:

Based on 2015 UWMP demand, supply, and storage program assumptions

| Base scenario with:  • SWP supplies via CA WaterFix  • Moderate supply reductions • Reduced SWP supply re liability • Large reduction in SWP supply re liability • Additional limits on ground water supplies and recycled water use | SCENARIO A            | SCENARIO B                                                                                                                                    | SCENARIO C                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                      | • SWP supplies via CA | <ul> <li>Moderate supply reductions</li> <li>Reduced SWP supply re liability</li> <li>Less increase in Saugus pumping capacity and</li> </ul> | <ul> <li>Large supply reductions</li> <li>Large reduction in SWP supply reliability</li> <li>Additional limits on ground water supplies</li> </ul> |

#### Initia l Re lia b ility of Sc e na rio s



#### 2050 Base Case vs. Scenario C

| So urc e                           | Normal-Year                        |                                   | Single Dry-Year |                        |               |
|------------------------------------|------------------------------------|-----------------------------------|-----------------|------------------------|---------------|
|                                    | Ba se Ca se                        | Scenario C                        | Ba se Ca se     | Scenario C             | Diffe re nc e |
| SWP Table A                        | 60,000                             | 42,800                            | 7,600           | 7,600                  |               |
| Rosedale Bank                      | N/A                                | N/A                               | 20,000          | 10,000                 | 10,000        |
| Ne w ha ll Se m itro p ic<br>Ba nk | N/A                                | N/A                               | 4,950           | No t in<br>Sc e na rio | 4,950         |
| Ne w Bank                          | N/A                                | N/A                               | 5,000           | Not in<br>Scenario     | 5,000         |
| Alluvium                           | 31,100 (Max)<br>29,000 (50% Prob.) | 31,100 (Max)<br>27,400 (50%Prob.) | 27,400          | 20,600                 | 6,800         |
| Saugus                             | 10,700                             | 10,700                            | 33,200          | 10,700                 | 22,500        |
|                                    |                                    |                                   |                 | To tal                 | 49,250        |

#### Scenario C: Mitigation Actions

- Conclusions:
  - ▶ Storage programs rather than additional supplies
  - ► Additional with drawal capacity from storage programs
- Can achieve 95% reliability goal through various programs and/or combinations of programs
- ▶ Po te ntia l a c tio ns use d in re lia b ility e va lua tio n:
  - Existing Rights Rosedale-Rio Bravo Banking Program
    - ▶ Increased take capacity to 20 TAFY by 2035
  - Access to Five Point Rights in Semitropic (Part of NR Specific Plan)
  - ► Create Saugus Formation Water Bank
- ▶ Otherprograms could a chieve similar reliability results

#### Re liability of Scenarios with Scenario C Potential Actions Evaluated



### Tapia Canyon Payment for Past Acquisition and Carrying Costs

| Type of Cost              | Tapia Canyon Share |
|---------------------------|--------------------|
| Ac q uisitio n C o st     | 706,109            |
| Carrying Cost (2007-2018) | 3,399,083          |
| Water Sales Credits       | <u>330,075</u>     |
| To ta l                   | 3,775,117          |

#### Conclusion

- ► Sufficient BV-RRB water supply is a vailable under 2015 UWMP planning assumptions
- ► Under less optimistic planning assumptions, the Agency has sufficient average water supplies and dry-year demands can be met through investments in storage programs

#### Recommendations

► The Water Resources and Watershed Committee recommends that the Board of Directors approve a resolution determining that 489 acre-feet per year of Buena Vista-Rosedale Rio Bravo Water Supply is available for possible use for the proposed Tapia Annexation.