

SCV WATER AGENCY TELECONFERENCE SPECIAL BOARD MEETING

WEDNESDAY, JUNE 9, 2021 START TIME: 6:00 PM (PST)

Join the Board meeting from your computer, tablet or smartphone: -OR-https://scvwa.zoomgov.com/j/1605774067

Listen in Toll Free by Phone +1-(833)-568-8864 Webinar ID: 160 577 4067

To participate in public comment from your computer, tablet, or smartphone:

When the Board President announces the agenda item you wish to speak on, click the "raise hand" feature in Zoom*. You will be notified when it is your turn to speak.

To participate in public comment via phone:

When the Board President announces the agenda item you wish to speak on, **dial *9 to raise your hand**. Phone participants will be called on by the **LAST TWO digits** of their phone number. **When it is your turn to speak, dial *6 to unmute**. When you are finished with your public comment dial ***6 to mute**.

Can't attend? If you wish to still have your comments/concerns addressed by the Board of Directors, all written public comments can be submitted by 4:00 PM the day of the meeting by either e-mail or mail.** Please send all written comments to the Board Secretary. Refer to the Board Agenda for more information.

Disclaimer: Pursuant to the Executive Order N-29-20 issued by Governor Newsom, public may not attend meetings in person. Public may use the above methods to attend and participate in the public board meetings.

^{*}For more information on how to use Zoom go to <u>support.zoom.us</u> or for "raise hand" feature instructions, visit <u>https://support.zoom.us/hc/en-us/articles/205566129-Raise-Hand-In-Webinar</u>

^{**}All written comments received after 4:00 PM the day of the meeting will be posted to yourscvwater.com the next day. Public comments can also be heard the night of the meeting.

[This page intentionally left blank.]

NOTICE AND CALL OF A SPECIAL MEETING

Notice is hereby given that I, the President of the Board of Directors of the Santa Clarita Valley Water Agency, hereby call a SPECIAL MEETING of the Agency's Board of Directors.

Said SPECIAL MEETING of the Board to be held on:

WEDNESDAY, JUNE 9, 2021 AT 6:00 PM

Santa Clarita Valley Water Agency Teleconference No Physical Location

Join the meeting from your computer, tablet or smartphone by clicking the link below.

https://scvwa.zoomgov.com/j/1605774067

Or

Call-in using your phone 1-(833)-568-8864 Webinar ID: 160 577 4067

Enclosed with and as part of this Notice and Call is an Agenda for the meeting.

Signed: May 27, 2021

May 27, 2021

Posted on June 2, 2021.

[This page intentionally left blank.]

SANTA CLARITA VALLEY WATER AGENCY SPECIAL BOARD MEETING AGENDA

SANTA CLARITA VALLEY WATER AGENCY RIO VISTA WATER TREATMENT PLANT 27234 BOUQUET CANYON ROAD SANTA CLARITA, CA 91350

TELECONFERENCE ONLY NO PHYSICAL LOCATION FOR MEETING

WEDNESDAY, JUNE 9, 2021 AT 6:00 PM

TELECONFERENCING NOTICE

Pursuant to the provisions of Executive Order N-29-20 issued by
Governor Gavin Newsom on March 17, 2020, any Director
may call into an Agency Board meeting using the Agency's
Call-In Number 1-(833)-568-8864, Webinar ID: 160 577 4067
or Zoom Webinar by clicking on the link https://scvwa.zoomgov.com/j/1605774067
without otherwise complying with the Brown Act's teleconferencing requirements.

Pursuant to the above Executive Order, the public may not attend the meeting in person. Any member of the public may listen to the meeting or make comments to the Board using the call-in number or Zoom Webinar link above. Please see the notice below if you have a disability and require an accommodation in order to participate in the meeting.

We request that the public submit any comments in writing if practicable, which can be sent to ajacobs@scvwa.org or mailed to April Jacobs, Board Secretary, Santa Clarita Valley Water Agency, 27234 Bouquet Canyon Road, Santa Clarita, CA 91350. All written comments received before 4:00 PM the day of the meeting will be distributed to the Board members and posted on the Santa Clarita Valley Water Agency website prior to the start of the meeting. Anything received after 4:00 PM the day of the meeting will be posted on the SCV Water website the following day.

OPEN SESSION BEGINS AT 6:00 PM

- 1. CALL TO ORDER
- 2. PLEDGE OF ALLEGIANCE
- 3. <u>PUBLIC COMMENTS</u> Members of the public may comment as to items not on the Agenda at this time. (Comments may, at the discretion of the Board's presiding officer, be limited to three minutes for each speaker.)
- 4. APPROVAL OF THE AGENDA

5. SPECIAL PROCEDURES

PAGE

5.1 *	Public Hearing on the Water Shortage Contingency Plan	7
5.2	Approve a Resolution Adopting the Water Shortage	
	Contingency Plan	
5.3 *	Public Hearing on the Water Conservation and Water	
	Shortage Ordinance	225
5.4	Approve an Ordinance for Water Conservation and Water	
	Shortage	

6. ADJOURNMENT

- * Indicates Attachment
- ♦ Indicates Handout

Note: The Board reserves the right to discuss or take action or both on all of the above Agenda items.

NOTICES

Any person may make a request for a disability-related modification or accommodation needed for that person to be able to participate in the public meeting by telephoning April Jacobs, Secretary to the Board of Directors, at (661) 297-1600, or in writing to Santa Clarita Valley Water Agency at 27234 Bouquet Canyon Road, Santa Clarita, CA 91350. Requests must specify the nature of the disability and the type of accommodation requested. A telephone number or other contact information should be included so that Agency staff may discuss appropriate arrangements. Persons requesting a disability-related accommodation should make the request with adequate time before the meeting for the Agency to provide the requested accommodation.

Pursuant to Government Code Section 54957.5, non-exempt public records that relate to open session agenda items and are distributed to a majority of the Board less than seventy-two (72) hours prior to the meeting will be available for public inspection at the Santa Clarita Valley Water Agency, located at 27234 Bouquet Canyon Road, Santa Clarita, CA 91350, during regular business hours. When practical, these public records will also be made available on the Agency's Internet Website, accessible at http://www.yourscvwater.com.

Posted on June 2, 2021.

M65

ITEM NO. 5.1

BOARD MEMORANDUM

DATE: June 9, 2021

TO: Board of Directors

FROM: Matthew S. Dickens, MPA

Sustainability Manager

SUBJECT: Public Hearing on the Water Shortage Contingency Plan

SUMMARY AND DISCUSSION

In response to the severe drought of 2012-2016, legislation was approved in 2018 which created a Water Shortage Contingency Plan (WSCP) mandate replacing the water contingency analysis proscribed in previous legislation. As part of its 2020 Urban Water Management Plan (UWMP) update, SCV Water staff, with support from A&N Technical Services, developed the WSCP in accordance with the new legislation requirements and in alignment with guidance from the California Department of Water Resources (DWR). Additionally, the WSCP update provides the agency opportunity to align and improve existing and legacy water shortage response planning activities, as outlined in the 2015 and previous iterations of the UWMP, to a single format for continuity in service area application.

This staff report includes summary of both the WSCP and an overview of Public Engagement, Public Comments, and Public Hearing Noticing activities. The approved WSCP will be included in the 2020 UWMP as an attachment which provides SCV Water with the ability to adapt and amend its WSCP as needed. Staff recommends the Board adopt the Water Shortage Contingency Plan.

Water Shortage Contingency Plan

The Water Shortage Contingency Plan documents SCV Water's processes and procedures for conducting Water Supply Reliability Analysis, Annual Water Supply and Demand Assessments, Six Standard Water Shortage Stages, Communications Protocols, Compliance and Enforcement, Legal Authorities, Financial Consequences, Monitoring and Reporting, Refinement Procedures, and Special Water Feature Distinctions. The Draft Water Shortage Contingency Plan is included in the packet as Attachment A.

Public Engagement, Public Hearing Noticing, and Public Comments

Public Engagement

Public engagement is a critical component of the planning process as it enables SCV Water to educate the public, gather input, solicit feedback, and connect stakeholders and the public with opportunities to ask questions and receive answers. For the WSCP, many engagement formats were provided including, but not limited to:

- Updates to Water Resources and Watershed Committee (November 2020 March 2021 Meetings)
- Public Workshop (January 28, 2021)
- Thirty-Day Public Comment Period (March 12, 2021 thru April 12, 2021)
- Water Resources and Watershed Committee (April 14, 2021 Meeting)
- Comments and Questions via email: wscp@scvwa.org

Additionally, public engagement opportunities included:

- Public Hearing for the Water Shortage Contingency Plan (June 9, 2021)
- Comments and Questions via email: wscp@scvwa.org

Regarding notice to the City of Santa Clarita, Los Angeles and Ventura Counties, United Water Conservation District, and Los Angeles Sanitation District, SCV Water provided advance notice of updates to the Urban Water Management Plan, Water Shortage Contingency Plan, and Water Conservation and Water Shortage Ordinance in October 2020 and March 2021.

Public Comments

SCV Water uploaded the Draft Water Shortage Contingency Plan to its website and notified the public regarding the thirty-day public comment period on March 12, 2021. SCV Water received 19 comments from the public via email at wscp@scvwa.org. Qualitatively, comments received address concerns regarding growth and development, water rates and costs, and water supply reliability. Staff continued to monitor the wscp@scvwa.org account for electronic comments and incoming mail for written comments beyond the close of the thirty-day public comment period on April 12, 2021. One additional comment was received following the thirty-day public comment period. Public comments received will be summarized and presented to the Board at the Public Hearing on June 9, 2021.

Public Hearing Noticing

The SCV Water Board of Directors will hold distinct public hearing for the Water Shortage Contingency Plan on Wednesday, June 9, 2021. The Public Hearings were conducted via Zoom Webinar and could be accessed using the following credentials:

https://scvwa.zoomgov.com/j/1605774067

Or Telephone:

833 568 8864 (Toll Free)

Webinar ID: 160 577 4067

Notice of the public hearing was published in the SCV Signal for two successive weeks (14 calendar days), at least two times (May 26, 2021 and June 4, 2021), with at least five days between publication dates, as prescribed by Government Code section 6066. Additionally, SCV Water published advertisements for supplemental public awareness via social media, online advertising, and via email notifications.

Attachments included in this report include the Draft Water Shortage Contingency Plan, the Water Shortage Contingency Plan Errata 1, CEQA Notice of Exemption, and the Draft Resolution to Adopt the Water Shortage Contingency Plan.

ATTACHMENTS

- A. DRAFT Water Shortage Contingency Plan (Revised May 19, 2021)
- B. Water Shortage Contingency Plan Errata 1
- C. Draft Resolution to Adopt the Water Shortage Contingency Plan

M65

[This page intentionally left blank.]

ATTACHMENT A

Draft Water Shortage Contingency Plan

May 2021

[This page intentionally left blank.]

Table of Contents

List of Figu	res	iii
List of Tabl	es	iv
Executive S	Summary	1
	Water Supply Reliability Analysis	
	Vater Supplies	
	•	
	nterProject Table A Supply	
	age Account	
	Water Banking Program	
** *	Demand Comparisons	
Section 2:	Annual Water Supply and Demand Assessment Procedu	
Section 3:	Six Standard Water Shortage Levels	
Section 4:	Shortage Response Actions	
4.1. Supply	Augmentation	18
4.2. Demai	nd Reduction	18
Types of Respo	onse Actions	19
Response Actio	on Process	20
Response Actio	on Objectives & Strategy	21
Interconnectivi	ity of Response Actions	22
Strategy per W	/ater Shortage Level	24
4.3. Opera	tional Changes	31
4.4. Additi	onal Mandatory Restrictions	31
4.5. Emerg	ency Response Plan	34
4.6. Seismi	c Risk Assessment and Mitigation Plan	34
4.7. Shorta	ge Response Action Effectiveness	37
Section 5:	Communication Protocols	40
Water Shortag	e Communication Response Action Strategy	43
Section 6:	Compliance and Enforcement	46
Section 7:	Legal Authorities	47
Section 8:	Financial Consequences of WSCP	48
Water Rate S	Structure	48
	cial Reservesvenue Reductions and Expenses Associated with Activated Shortage	
	nsequences of Limiting Excessive Water Use	

Section 9:	Monitoring and Reporting	50
Section 10:	WSCP Refinement Procedures	51
Section 11:	Special Water Feature Distinction	52
Section 12:	Plan Adoption, Submittal and Availability	53
Resources	and References	54
	: SCV Water Conservation and Water Supply Shortage	55
Appendix B	: SCV Water Seismic Analysis	56

List of Figures

Figure 1: Shortage Evaluation Process	9
Figure 2: Proposed Response Action Strategy	14
Figure 3: Monitoring Framework	
Figure 4:Indicator Data and Shortage Stages	
Figure 5: Response Action Process	
Figure 6: Response Plan	21
Figure 7: Interconnectivity of Response Actions	
Figure 8: Response Plan	
Figure 9: Response Action Process	

List of Tables

Table 1: Drought Stages	16
Table 2: Prioritized Water Uses	
Table 3: Supply Augmentation	
Table 4: Water Shortage Contingency Plan Stages	
Table 5: Summary of Water Shortage Contingency Plan Strategy per Shortage	
Stage/Level	29
Table 6: Water Waste ProhibitionsRanking by Stage	
Table 7: Demand Reduction Action Effectiveness	
Table 8: Estimated Demand Reduction from Restricting all Outdoor Water Uses	39

Executive Summary

This Water Shortage Contingency Plan (WSCP, Plan) is a detailed proposal for how the Santa Clarita Valley Water Agency (SCV Water) intends to act in the case of an actual water shortage condition. SCV Water's mission is to provide responsible water stewardship to ensure the Santa Clarita Valley (Valley) has reliable supplies of high-quality water at a reasonable cost. Reliable, high quality water service is critical to an economically and environmentally vibrant community. This plan is part of good management policy even if SCV Water's water supply appears to have a low probability of shortage conditions, as it improves preparedness for droughts and other impacts on water supplies. The WSCP anticipates a water supply shortage and provides pre-planned guidance for managing and mitigating a shortage. The WSCP allows real-time water supply availability assessment and structured steps designed to respond to actual conditions, to allow for efficient and effective management of any shortage with predictability and accountability.

Certain elements of the WSCP are required by California Water Code (Water Code), including five specific response actions that align with six standard water shortage levels based on SCV Water's water supply conditions and shortages resulting from catastrophic supply interruptions. The WSCP also contains SCV Water's procedures for conducting an annual water supply and demand assessment, which is the written decision-making process for determining supply reliability each year, along with the data and methods used to evaluate reliability.

As part of its Urban Water Management Plan (UWMP), Water Code Section 10632 requires Suppliers to prepare and adopt a WSCP that consists of each of the following elements, which comprise the sections in this plan document:

- 1. Water Supply Reliability Analysis
- 2. Annual Water Supply and Demand Assessment Procedures
- 3. Six Standard Water Shortage Stages
- 4. Shortage Response Actions
- 5. Communication Protocols
- 6. Compliance and Enforcement
- 7. Legal Authorities
- 8. Financial Consequences of WSCP
- 9. Monitoring and Reporting
- 10. WSCP Refinement Procedures
- 11. Special Water Feature Distinction
- 12. Plan Adoption, Submittal, and Availability

The WSCP is a stand-alone document created separately from the UWMP and can be amended, as needed, without amending the UWMP. This 2020 WSCP is included in SCV Water's 2020 UWMP submitted to the California Department of Water Resources (DWR) by July 1, 2021.

Section 1: Water Supply Reliability Analysis

This section summarizes (a) the findings related to water system reliability conducted pursuant to Water Code Section 10635, and (b) key issues that may create a shortage condition when looking at the SCV Water's water asset portfolio. Specifically, this section summarizes SCV Water's supply analysis and its water reliability findings in UWMP Section 7 (Reliability Planning and Drought Risk Assessment), recognizing that the WSCP can be a stand-alone document that will be submitted with the 2020 UWMP.

The UWMP Act requires urban water suppliers to assess water supply reliability that compares total projected water use with the expected water supply over the next twenty years in five-year increments. The Act also requires an assessment for a single dry year and multiple dry years. This section presents the reliability assessment for SCV Water's service area. SCV Water's goal is to deliver a reliable and high-quality water supply for their customers, even during dry periods.

Reliability of Water Supplies

Each water supply source has its own reliability characteristics. In any given year, the variability in weather patterns around the state may affect the availability of supplies to the Valley differently, depending on whether supplies are from local sources or are imported from other parts of the state. The Valley is typical in terms of water management in southern California; local groundwater supplies are used to a greater extent when imported supplies are less available due to dry conditions in the north, and larger amounts of imported water supplies are used during periods when northern California has wetter conditions. This pattern of "conjunctive use" has been in effect since State Water Project (SWP) supplies first came to the Valley in 1980. SWP and other imported water supplies have supplemented the overall supply of the Valley, which previously depended solely on local groundwater supplies.

To supplement these local groundwater supplies, SCV Water contracts with DWR for delivery of SWP water, providing an imported water supply to the Valley. However, the variability in SWP supplies affect the ability of SCV Water to meet the overall water demands for the service area. While each of the Valley's available supply sources has some variability, the variability in SWP supplies has the largest effect on overall supply reliability.

Groundwater

In accordance with the groundwater operating plan for the basin, groundwater supplies for all uses from the Alluvial Aquifer are planned to be in the range 30,000 to 40,000 AF. With long-term pumping for municipal purveyors estimated to be approximately 30,800 AFY at buildout during normal years and about 26,100 AFY during dry-years. Available supplies are substantially less in the near-term as supplies have been curtailed because of PFAS contamination and transfers of pumping associated with the Newhall Ranch development have not yet been fully realized. In 2021 SCV Water estimates 12,000 AF

of alluvial supplies will be available. Recovery of Alluvial supplies over the next decade is shown in Tables 4.8B and 4.8C (2020 UWMP Appendix E). The basin operating plan for the Saugus Aquifer provides for 7,500 AFY-15,000 AFY in normal years and up to 35,000 AFY during dry-years. In the near-term supplies are limited due to Perchlorate contamination and the need to construct additional dry-year well capacity. Currently, SCV Water estimates recovery capacity at about 15,000 AFY. Tables 4.9B and 4.9C (2020 UWMP Appendix E) indicate when additional yield can be accessed from the Saugus Aquifer.

Recycled Water

The existing and projected availability of recycled water supplies, including various factors having the potential to affect the amounts and availability of those supplies, are discussed in detail in the UWMP.

SCV Water has constructed Phase I of the Recycled Water Master Plan (RWMP, 2016), which can deliver up to 1,700 AFY of water to the Valencia service area. Deliveries of recycled water began in 2003 for irrigation water supply at a golf course and in roadway median strips, however demand from permitted customers have limited deliveries of recycled water. In 2015, recycled water deliveries were 450 AF.

Phase 2 is planned to expand recycled water use within Santa Clarita Valley and consists of four projects currently in various stages of design. The Draft RWMP Update projects providing up to 10,054 AFY of treated (tertiary) recycled water suitable for reuse on golf courses, landscaping and other non-potable uses in Santa Clarita Valley to the extent those supplies are available. Subsequent long-term estimates of available supplies based on recycled water being generated from new development estimate about 9,000 AFY new recycled water being available. All of the available recycled water in the peak summer months would be used to meet demands that include existing Phase 1 projects, Phase 2 expansions currently in design, planned developments (including Newhall Ranch and Vista Canyon) and future nearby customers served by extending off the Phase 2 system.

State Water Project Table A Supply

For this Plan, the availability of SWP supplies to SCV Water was based primarily on DWR's *Delivery Capability Report* (DCR). For the four hydrologic conditions evaluated here, the SWP deliveries to SCV Water were taken from DWR's analyses based on the following: average/normal year based on the average deliveries over the studies' 82-year historical hydrologic study period (1922-2003), single-dry year based on a repeat of the worst-case actual allocation of 2014, four year dry period based on a repeat of the historical drought of 1931-1934, and three-year dry period based on a repeat of the historical drought of 1990-1992.

While contractors may store their unused Table A supply as carryover, and additional types of water such as Article 21 water may periodically be available from the SWP, further the recent Water Management Tools amendment allows for single and multi-year water transfers among SWP Contractors, these are not included as supplies in Section 6 because of the uncertainty in their availability. However, to the extent SCV Water is able

to make use of these supplies when available, SCV Water may be able to improve the reliability of its SWP supplies beyond the values used in this section.

Flexible Storage Account

Under the Supply Contracts with DWR for SWP water, the contractors that share in the repayment of Castaic Lake may access a portion of the storage in that reservoir. This accessible storage is referred to as "flexible storage." The contractors may withdraw water from flexible storage, in addition to their allocated Table A supplies, on an asneeded basis. A contractor must replace any water it withdraws from this storage within five years of withdrawal. As one of the three contractors sharing in the repayment of Castaic Lake, SCV Water has access to this flexible storage. Its share of the total flexible storage is currently 4,684 AF.

Storage and Water Banking Program

SCV Water has invested in flexible supply programs that can be accessed to avoid water shortages and shortage costs to its customers in the Valley. Sometimes termed "water banking," these shortage mitigation investments allow water to be stored in a groundwater basin to be accessed when needed to avoid water shortages. These "smart" investments in storage programs improve the diversity of SCV Water's supply portfolio and cost-effectively improve water service reliability throughout our community. SCV Water currently has two banking programs. The Rosedale-Rio Bravo Bank can store up to 100,000 AF and can currently recover 10,000 AFY. The Semitropic Bank can store 35,000 and recover 5,000 AFY.

Storage programs and supplies that were considered for supply evaluation are as follows.

- Rosedale-Rio Bravo Banking Program increased take capacity: Under SCV Water 's existing contract with RRBWSD for this program, SCV Water has the right to develop four additional extraction wells, which would bring the firm recovery capacity under this program from 10,000 AFY to 20,000 AFY. This increase would provide additional dry year access to the water SCV Water stores in this existing program, which has a maximum storage capacity of 100,000 AF (and is currently full). This additional take capacity was included in the 2015 UWMP as a planned banking supply increase, assumed in that document to be available by 2030.
- Semitropic Banking Program Newhall Land: Newhall Land participates in a groundwater banking program with Semitropic in which it has a pumpback capacity of 4,950 AFY and a storage capacity of 55,000 AF. Newhall Land entered into this banking program in anticipation of the development of Newhall Ranch. Under its agreement with Semitropic, Newhall Land may assign its rights to this program to SCV Water. However, the terms for such an assignment have yet to be determined. In the 2015 UWMP, it was assumed that Newhall Ranch would be developed and that Newhall Land's rights in this banking program would be transferred to SCV Water at the time of development, and that prior to that time the take capacity under this program would be available to SCV Water.

- This program, including interim access to take capacity, was excluded from the initial assessment of Scenario C.
- New groundwater bank: In the 2015 UWMP, additional groundwater banking programs with a take capacity of 5,000 AFY were assumed to be developed, with supplies assumed to be available after 2045. No specific programs were identified in the UWMP, although a number of groundwater banking programs in various stages of planning and development, or new programs yet to be defined, could provide this supply.
- Willow Springs Water Bank, Antelope Valley: This project is located in eastern Kern County, in the northern portion of the Antelope Valley. It is adjacent to both the East Branch of the California Aqueduct and the Los Angeles Aqueduct. This program is active and is seeking participants.
- Antelope Valley-East Kern Water Agency High Desert Water Bank: This is a project proposed by the Antelope Valley-East Kern Water Agency (AVEK), a SWP wholesaler located in the Antelope Valley area of southeastern Kern County and northern Los Angeles County. The proposed groundwater banking project would be developed and operated by AVEK, and would be located adjacent to the East Branch of the California Aqueduct. As proposed, the project would have a total storage capacity of 280,000 AF, with recharge and recovery capacities of 70,000 AFY. AVEK is currently conducting pilot testing, and the environmental analysis for the proposed project is in process. AVEK is actively seeking banking partners.
- Palmdale Regional Groundwater Recharge and Recovery Project: The Palmdale Water District (PWD), a SWP wholesaler, is implementing a large-scale groundwater recharge and recovery project located adjacent to the East Branch of the California Aqueduct. The project will obtain water for recharge from the SWP and also from recycled water produced by the Los Angeles County Sanitation District Palmdale Water Reclamation Plant. CLWA could be a potential partner in the project by banking excess supply in wet years and recovering that supply in dry years.
- Saugus Formation Aquifer Storage and Recovery (ASR) Program: The feasibility of implementing an ASR program in the Saugus Formation has been evaluated through field testing and groundwater modeling simulations. Reconnaissance-level analysis indicates that such a program is feasible. In addition to water reliability benefits, a Saugus ASR program could provide other operational benefits (e.g., higher groundwater levels) and local storage.
- Groundwater Replenishment with Recycled Water: The feasibility of using recycled water for a groundwater recharge program in the eastern portion of the Alluvium has been evaluated in the Water Supply Measures Reconnaissance Study and further refined in the draft RWMP. A recycled water recharge project could provide operational benefits (e.g., higher groundwater levels in the Alluvium), increased recycled water usage and greater water recovery from the Alluvium in eastern parts of the groundwater basin. Conceptual design for the

project is an extension of the proposed Phase 2A recycled water pipeline, with approximately 5,000 AFY of recycled water from the Valencia WRP discharged to a recharge basin adjacent to the Santa Clara River, and average recovery of 3,500 AFY from downstream Alluvial wells.

Supply and Demand Comparisons

The available supplies and water demand for SCV Water's service area was analyzed to assess the region's ability to satisfy demands during four scenarios: a normal water year, a single-dry year, and two multiple-dry year periods in the 2015 UWMP.

PFAS

Per- and polyfluoroalkyl substances (PFAS) are a group of man-made chemicals, which includes PFOA, PFOS and GenX. For more than 70 years, PFAS have been manufactured and used in a variety of industries worldwide. According to the Environmental Protection Agency, exposure to certain PFAS can lead to adverse health effects in humans. (Source: https://yourscvwater.com/pfas/).

SCV Water quickly responds to changing guidelines and regulations from the State Water Resources Control Board – Division of Drinking Water. Under the current response levels, last lowered in February 2020, 17 of the 42 active agency wells have been removed from service. This accounts for approximately 45 percent of the Agency's groundwater supply. In 2019, groundwater accounted for 28% of the total water used in the SCV Water service area. SCV Water will continue to rely on its diverse water supply portfolio, including imported and banked water, to minimize supply impacts to customers. SCV Water's first PFAS treatment facility opened in fall of 2020, restoring about one-third of the impacted groundwater, with others to follow by summer 2021. (Source: https://yourscvwater.com/pfas/).

Perchlorate

SCV Water prioritizes the delivery of clean water that meets all state and federal health standards. Long-term work toward the remediation of perchlorate contamination, first discovered in 1997 in several Saugus wells, continues at the present time. The objective of the perchlorate restoration and containment plan has been to stop the migration of the contaminant plume and restore the lost well capacity through a pump and treat method. SCV Water's Saugus Perchlorate Treatment Facility (SPTF) has been online since 2011, and a second Perchlorate Treatment Facility came online in 2017, and together these facilities have now treated a combined amount of almost 32,000 AF. The ability to pump the Saugus Formation at dry year levels has been historically impaired due to perchlorate contamination issues and resultant reduced production capacity. Both of these issues are expected to be resolved through installation of treatment and achieving containment. (Source: Adapted from 2019 Santa Clarita Valley Water Report, July 2020).

Section 2: Annual Water Supply and Demand Assessment Procedures

Beginning by July 1, 2022, SCV Water is required to prepare and submit its annual water supply and demand assessment (referred "Annual Assessment"). The Annual Assessment will be due by July 1 of every year, as required by Water Code Section 10632.1. The Annual Assessment and associated reporting are to be conducted based on the SCV Water procedures detailed in this section of the WSCP. As required by Water Code Section 10623(a), the WSCP shall include its specific procedures—akin to its instruction manual—that describe annual steps and timing to complete the Annual Assessment, such that it can be consistently followed year-after-year, regardless of changing staff undertaking the steps:

- Decision making process
- Data and methodologies
 - 1. Evaluation criteria
 - 2. Water supply
 - 3. Unconstrained customer demand
 - 4. Planned water use for current year considering dry subsequent year
 - 5. Infrastructure considerations
 - 6. Other factors

Decision making process

This section describes the decision-making process—including functional steps—to formally approve the Annual Assessment determination of water supply reliability each year.

September

- Prepare SWP water order for upcoming year.
- Continue to track monthly water demands in service area.
- Monitor San Luis Reservoir Storage Levels including carryover storage levels for Agency and other State Water Contractors (SWC).
- Monitor NOAA precipitation forecasts.

October

- Continue to track monthly water demands in service area.
- Monitor San Luis Reservoir Storage Levels including carryover storage levels for Agency and other SWC.
- Monitor NOAA precipitation forecasts.

November

- Continue to track monthly water demands in service area.
- Monitor San Luis Reservoir Storage Levels including carryover storage levels for Agency and other SWC.
- Monitor NOAA precipitation forecasts.

- Consider early implementation of water recovery from banking and exchange programs when early water year precipitation is low and low levels of carryover water exist.
- Review DWR outage schedules for upcoming year.

December

- Continue to track monthly water demands in service area.
- Monitor San Luis Reservoir Storage Levels including carryover storage levels for Agency and other SWC.
- Monitor NOAA precipitation forecasts. Receive initial SWP allocation.
- Review DWR positional analysis (from SWC Water Operations Committee)
- Prepare alternative operating plans.
- Consider early implementation of water recovery from banking and exchange
 programs when early water year precipitation is low and low levels of carryover
 water exist or limitations of local groundwater supplies are anticipated to exist in
 the upcoming calendar year.

January

- Review DWR positional analysis (from SWC Water Operations Committee)
- Update alternative operating plans.
- Consider early implementation of water recovery from banking and exchange programs and investigate water purchases (transfers) when early water year precipitation is low and low levels of carryover water exist or limitations of local groundwater supplies are anticipated to exist in the calendar year.

February

- Review DWR positional analysis (from SWC Water Operations Committee)
- Update alternative operating plans.
- Consider implementation of water recovery from banking and exchange programs and water transfers when early water year precipitation is low and low levels of carryover water exist or limitations of local groundwater supplies are anticipated to exist in the calendar year.

March

- Review DWR positional analysis (from SWC Water Operations Committee)
- Update alternative operating plans.
- Consider implementation of water recovery from banking and exchange programs and water transfers when early water year precipitation is low and low levels of carryover water exist or limitations of local groundwater supplies are anticipated to exist in the calendar year.
- Seek approval of dry-year water transfers if any.

April

• Review DWR positional analysis (from SWC Water Operations Committee)

- Update alternative operating plans. Consider implementation of water recovery
 from banking and exchange programs when early water year precipitation is low
 and low levels of carryover water exist or limitations of local groundwater
 supplies are anticipated to exist in the upcoming calendar year.
- Seek approval of dry-year water transfers in any.

January/June

 Report to WR Committee and Board Status of Water Supplies (update the WR Committee monthly to bimonthly, starting in January, depending on conditions).

July/August

• Submit Annual Water Supply and Demand Assessment, July 1 each year

Data and methodologies

This section includes the description of key data inputs and Annual Assessment methodologies used to evaluate the water system reliability for the coming year. In general, SCV Water follows the state DWR determination of "dry" years, as this is directly related to SWP Table A supply availability. Figure 2 illustrates this Shortage Evaluation Process.

Shortage Evaluation Process

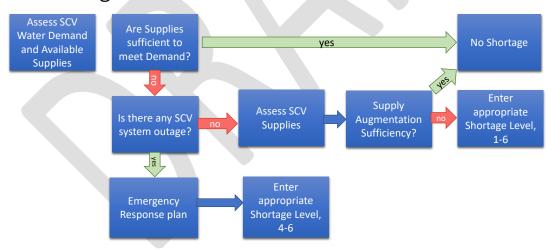


Figure 1: Shortage Evaluation Process

1. Evaluation criteria

The following local and statewide documents and data sources form the evaluation criteria that SCV Water will use for each Annual Assessment:

- SCV Water demand forecast
- Local and imported operations constraints, local groundwater/import demands from each system (collected in September for following calendar year estimates)

- DWR monthly operations report documents (includes snowpack data, DWR
 positional analysis (allocation forecasts), San Luis Reservoir storage forecasts,
 streamflow forecasts, and weather updates (Nov-June)
- State Water Table A Allocation ("Notice to Contractors")
- Banking program balances
- Exchange program balances
- SCV precipitation

2. Water supply

The following summarizes the portfolio of water supplies SCV Water relies on to provide reliable service.

Alluvial Groundwater- Use the quantification numbers referenced in the UWMP tables chapter 3 for total amount available with and without PFAS wells each year moving forward (not completed yet). Operations provides an estimate of alluvial groundwater production on a monthly basis for each year. This estimated information is provided in September before the annual assessment year. This information is based on historical monthly demands from each area and includes any operations outages anticipated for the year.

<u>Saugus Groundwater</u> - Use the quantification numbers referenced in the UWMP tables chapter 3 for total amount available each year (not completed yet). Operations provides an estimate of Saugus groundwater production on a monthly basis for each year. This estimated information is provided in September before the annual assessment year. LAWWD 36 also provides an estimate of their monthly Saugus production demands annually. This information is based on historical monthly demands from each area and includes any operations outages anticipated for the year.

<u>Recycled Water</u> — Use the urban plan tables for recycled water estimates and double check with operations to verify amount each year as this production ramps up into the future.

State Water Table A allocation – Range is 0-100%, total Table A supply is 95,200 AF and based on % allocation issued by state throughout the year. This allocation is issued around November prior to the year of the Water Supply Assessment (starts low and ramps up or down depending on winter conditions). In October prior to the Water Supply Assessment year, SCV Water provides DWR with a range of scenarios for our imported water needs based on different allocations (100%, 60%, 50%, 30%, 15%). SCV Water monitors the change in allocation through to the final allocation which could be issued anytime between April and June depending on conditions. Low allocations indicate use of Dry Year Water supplies. Higher allocations could indicate potential surplus conditions which lead to other potential water management options like increased storage at banking programs, increased carryover storage at San Luis Reservoir, transfer of excess SWP or BVRRB water supplies, and deliveries to water exchange programs with other contractors.

<u>Buena Vista Rosedale-Rio Bravo Water Supply –</u> This water source provides 11,000 AFY. This is a firm water supply that does not change from year to year. Delivery based on the agreement for this water supply is 1,100 AF each month March-December. In the water supply assessment, we would utilize this water locally in dry conditions, and as describe above, look at selling this supply to other Agencies in wet conditions.

<u>Article 56c Water Supply – This water supply</u> is extremely variable from year to year. In dry years it can be a critical source of water to supplement low imported Table A supplies. In wet years, this water is generally not used, or available. This water is utilized within the Water Supply Assessment in the first few months (Jan-April) to help meet imported water demands if available. It is also conserved as needed in anticipation of consecutive dry year scenarios.

Rosedale-Rio Bravo Water Storage District Banking Program — This water supply is classified as a Dry Year water supply and is used to supplement imported water needs in dry years. Annual recovery capacity for this supply is 10,000 AFY, dependent on available water storage balances for the SCV Water program. The water can be delivered throughout the year as requested, with monthly recovery capacity limitations dependent on operations at the RRB Facility. More water is generally available in the Spring, Fall and Winter months. SCV Water makes decisions to use this water based on early dry Winter conditions, dry water operations forecasts from DWR, potential low SWP Table A allocation, reduced local groundwater supply conditions, and or increased imported demands. Preliminary order for this water supply must be submitted to RRB by Feb. 15th and final request by May 1 each year.

Semitropic Stored Water Recovery Unit Banking Program – This water supply is classified as a Dry Year water supply and is used to supplement imported water needs in dry years. Annual recovery capacity for this supply is 5,000 AFY, dependent on available water storage balances for the SCV Water program. The water can be delivered throughout the year as requested with monthly recovery capacity limitations dependent on operations at the Semitropic Facility. Minimal water deliveries are available through the summer months, with greater deliveries available in the Fall and Winter months. SCV Water makes decisions to use this water based on early dry Winter conditions, dry water operations forecasts from DWR, potential low SWP Table A allocation, reduced local groundwater supply conditions, and or increased imported demands. Recovery request are due May 1st each year, and storage requests are due by April 15th.

Yuba Accord Water – This water supply is utilized in dry years to supplement lack of SWP Table A supplies. It is based on an agreement that allows the Agency to purchase transferable and exportable surface water. This water is only available in dry years when there is transfer capacity through the Delta available. The total amount of water supply is variable each year. Reports on Yuba supply availability are provided at the DWR Operations monthly meetings starting in March. Average supply available to SCV Water is about 1,000 AF in dry years.

State Water Contractors Dry Year Water Transfer Program y— This is an opt. in program available for SCV Water if they are in need of supplemental dry year water supplies. This water is only available in dry years when there is transfer capacity through the Delta available. The total amount of water supply is variable each year. Negotiations for this water supply start in January, and deliveries occur in late summer-fall. Delivery amounts for the Agency depend on cost per acre-foot, participation from other agencies and need.

<u>Water Exchange Programs – These programs provide additional imported water supplies, used in below normal or normal years.</u> The water is not generally available in dry years to supplement lack of water supplies. Deliveries of this water can occur when requested throughout the year if the exchange partner is in agreeance. Current exchange program water is available with a SWP Table A allocation of 30% or higher.

<u>Flexible Storage Account – This</u> is an emergency supply of water for the Agency which is stored in Castaic Lake. The total available water is 6,060 AF. This water can be used as needed but must be returned within 5 years of use. SCV Water can use any amount at any time, there are no limitations on this.

<u>Nickel Water – This water supply is owned by 5 Point and is available for purchase in dry years with agreement from 5 Point.</u> The amount available each year is 1,607 AFY.

<u>Newhall Land Semitropic Water Storage District Banking Program</u> – This water supply is based on NLF's contract rights to store and recover water from this program. The amount available each year is up to 4,950 AFY.

3. Unconstrained customer demand

SCV Water uses the Decision Support System (DSS) model to estimate unconstrainted customer water demand based on sociodemographic and land use data.

4. Planned water use for current year considering dry subsequent year

As SCV Water plans for the current year, it evaluates several different scenarios for the current year, ranging from a 100% SWP Table A allocation down to a 5% SWP Table A allocation. In the lower allocation scenarios, the different supplies sources are distributed throughout the operating plan to preserve sufficient supplies for the following year, assuming the worst-case scenario, "Single Dry Year" with a 5% State Water Project Table A allocation. First, it evaluates local groundwater supplies to evaluate available groundwater and adjust imported water needs appropriately (source UWMP tables for different dry year scenarios for Alluvial and Saugus groundwater supplies in chapter 3). Specifically, it would modify the use of our Article 56c supplies, banking program supplies, and its Flexible Storage account to make sure it has adequate supplies available for a consecutive Single Dry Year.

5. Infrastructure considerations

In September, Operations provide estimates of imported and groundwater demands to Water Resources for the upcoming water supply assessment. Infrastructure capability considerations are included in this analysis. For example, operations will take into

account the schedule for PFAS well recovery in addition to any known outages. Infrastructure capabilities are constantly monitored by operations and water resources staff and communicated if adjustments in water supplies needed are required throughout the year. When there are unexpected infrastructure complications, operations, water resources, engineering and management meet regularly to monitor and manage water supplies decisions as needed.

6. Other factors

The following are locally applicable factors that can influence or disrupt supplies, along with other unique local considerations that are considered as part of the Annual Assessment:

- Construction projects
- DWR planned outages and maintenance at Castaic Lake and other reaches of the CA Aqueduct
- Permitting request delays to get wells back online
- Dry conditions locally can reduce alluvial groundwater supplies
- Agreement coordination delays can influence imported water deliveries
- Demand fluctuations with weather changes
- Fires, earthquakes
- Electrical outages
- Water quality, locally or imported
- Equipment failures

Section 3: Six Standard Water Shortage Levels

SCV Water has developed response action **stages** that correspond to the DWR defined six standard water shortage **levels** (up to 10-, 20-, 30-, 40-, 50-percent, and greater than 50-percent shortage compared to the normal reliability condition). SCV Water's response actions are divided by stages in the WSCP ordinance to meet the severity of the impending shortage level.

The six standard water shortage levels correspond to progressively increasing estimated shortage conditions (up to 10-, 20-, 30-, 40-, 50-percent, and greater than 50-percent shortage compared to the normal reliability condition) and align with the response actions SCV Water will implement to meet the severity of the impending shortages.

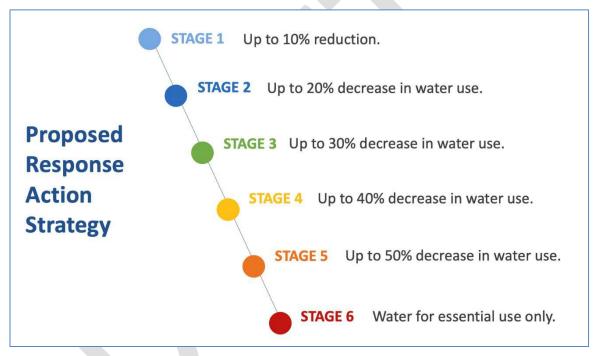


Figure 2: Proposed Response Action Strategy

SCV Water will take an adaptive performance-based approach to its response at all of the water shortage levels. If performance monitoring detects a lack of equilibrium between available supply and expected customer demand, the agency will adapt its approach. To illustrate, SCV Water can adaptively increase activity in public education and awareness to mitigate demand load. SCV Water builds credibility with its customer base through targeted messaging and collaboration. These approaches have been successful in large drought periods in the past without the use of fines, which can be reserved for extreme cases. All of the indicators will be closely monitored and responses will be assessed based on real-time conditions.

Timing of demand response actions will be a key consideration, given different lags between initiated actions and the customer response time. Close monitoring will allow SCV Water to have the lead time to implement response actions in time for needed demand adjustments. Demand response actions can take several weeks to several months to get traction and to move the behavior of a community.

Timing of supply response actions is not as uncertain, given there is not the need to motivate customer behavior, yet it requires careful sequencing and planning to achieve reliability given the various local and imported supply, storage, and transmission infrastructure. SCV Water will closely monitor production numbers and monthly billing as indicators providing visibility into current conditions. In summary, SCV Water will utilize lots of tracking to see what response is needed and adapt in the moment.

The **monitoring framework** provides the tools and process to determine the existence and severity of a drought or water shortage.

This framework will rely on SCV Water regularly monitoring numerous data sources, interpretation of real-time conditions and prediction of future supply.

There are five primary components to the monitoring framework.

- Hydrologic conditions
- Imported water availability
- Local groundwater levels
- Banking and transfer availability
- Local demands

The assessment looks at current and future projected water supplies as compared to current and projected water demand. Should there be a downward shift in available water supplies or an increase in customer demand, SCV Water will determine the severity of

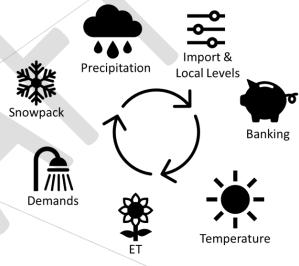


Figure 3: Monitoring Framework

the change, the categorized stage level, and then determine the required response.

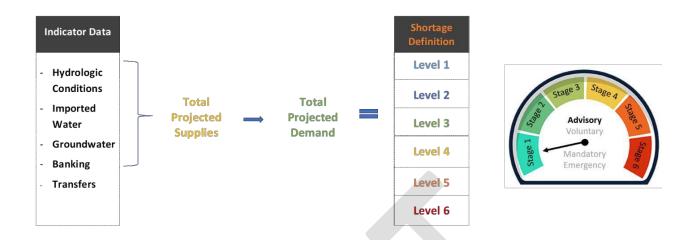


Figure 4:Indicator Data and Shortage Stages

Stages will be defined based on the calculated supply-demand ratios for the service area. The water shortage stages and descriptions are shown in Figure 6 and Table 1 below. These stages will be used to help the Water Shortage Taskforce identify the most appropriate responses for the anticipated shortages. The stages are in compliance with the 2018 state legislation (SB 606 and AB 1668), which now requires water shortage plans to be standardized and include six stages of water shortage severity.

Table 1: Drought Stages

Shortage Stage:	Stage Descriptions:	Triggers:
Stage 0	Normal Conditions	No water shortages anticipated.
Stage 1	Watch Conditions	Voluntary up to 10% decrease in water use.
Stage 2	Moderate Shortage	Voluntary up to 20% decrease in water use.
Stage 3	Significant Shortage	Voluntary up to 30% decrease in water use.
Stage 4	Critical Shortage	Mandatory up to 40% decrease in water use.
Stage 5	Emergency Shortage	Mandatory up to 50% decrease in water use.
Stage 6	Catastrophic Shortage	Water for essential use only.

Section 4: Shortage Response Actions

This section presents SCV Water's locally appropriate "shortage response actions" as required by Water Code Section 10632 (a)(4). These include a broad range of supply augmentation responses, customer-class or water use-specific demand reduction initiatives, system infrastructure and operations responses, and increasingly stringent water use prohibitions. We align response actions to the six shortage levels in the Response Plan outlined below.

The overall response strategy SCV Water uses during shortage periods follows the same logical extension of normal operations which balances supply augmentation strategies with conservation progress and demand management. Priority dispatch is designed into SCV Water shortage response actions. Priority dispatch is a well-known principle in networked utilities industry. Lowest cost resource alternatives are base loaded and more expensive flexible resources are dispatched later on an as-needed basis. These principles apply to prioritize the Shortage Response Actions.

What are the characteristics of Shortage Response Actions that would determine an early or late dispatch priority on an action in response to a shortage? The first characteristic is cost: lower-cost actions should be selected for dispatch first. Another important characteristic might be the certainty of result: actions that generate more certain results should be prioritized over actions that were more speculative. Another characteristic would be operational feasibility: actions that can be implemented quickly need to be.

As a result, supply augmentation is the first shortage response action. Implemented prior to calls for demand reduction: shortage response actions involving customer demand reduction impose shortage costs on SCV Water customers. These customer shortage costs, though they do not appear as direct financial costs to SCV Water, do appear as very real costs to SCV Water customers. The purpose of the plan is to minimize the effect of a shortage of water for customers in the Valley. Though described as customer shortage costs, the impact on customers can equally be described as the avoided benefits from having water available.

Motivated by the need to minimize customer shortage costs, a priority for protecting customer end uses of water emerges as shown in Table 2.

Table 2: Prioritized Water Uses

Prioritized Water Uses

- 1. Health and Safety interior residential and firefighting
- 2. Commercial, Industrial, and Institutional maintain economic base, protect jobs
- 3. Permanent Crops takes 5 to 10 years to replace
- 4. Annual Crops protect jobs
- 5. Landscaping direct water to trees and shrubs
- 6. New Demand beyond construction projects already approved

4.1. Supply Augmentation

This section specifies SCV Water's locally appropriate supply augmentation actions, as required by Water Code Section 10632 (a)(4)(A). As described in Section 1 Supply Reliability Analysis, SCV Water has invested in creating a diversified portfolio of water supply assets that include flexible supply options for dry years. The current dry year supplies potentially available for supply augmentation to mitigate shortage are outlined in Table 3.

Table 3: Supply Augmentation

Dry Year Supplies	Amounts	Comments
	Available	
Article 56C (Carryover	varies each year	Used before other programs, but portions
Supplies SWP)		saved in case of consecutive dry years
Existing Banked Programs	0-15,000 AFY	RRB - 10,000 AFY, Semitropic SWRU
		5,000 AFY
Saugus Groundwater	amounts vary	Pump more water locally if available
Yuba Water Accord	0-1,000 AFY	Water Purchase in Dry Years only
Agreement		
State Water Contractors	0-3,000 AFY	Water Purchase in Dry Years. Not
Dry Year Transfer		guaranteed amounts
Program		
Nickel Water	0-1,607 AFY	Water Purchase
Newhall Land Banking	0-4,950 AFY	Water Purchase
Flex Storage	0-6,060 AFY	Emergency Storage in Castaic Lake

The selection of flexible (dry year) supplies will be determined on a real-time, case by case basis depending on the circumstances discerned by the SCV's supply and demand assessment and the drought monitoring process.

4.2. Demand Reduction

With growing populations and the inevitability of future drought cycles, SCV Water's overarching goal is to create a water efficient region that can successfully withstand future water shortages without hardship.

SCV Water has been arduously working to re-shape customers' attitudes about water sustainability and their personal role in achieving water shortage resiliency. Through education, messaging, and programs, SCV Water has been driving change, however, customers still have a way to go to fully make the transition. A significant percentage of customers have made significant equipment and lifestyle changes at their properties, but though significant water conservation and efficiency opportunities persist. Regional water sustainability can be achieved only when:

- 1. Customers understand the value of water & the unique conditions of the Santa Clarita Valley.
- 2. Customers have shortage-sustainable properties <u>prior</u> to emergency conditions.
- 3. Customers experience no water deprivation hardship during a drought cycle or water shortage due to the sustainable landscape design of their properties and their water-consuming equipment.

While striving for full water efficiency as the goal, SCV Water understands challenges persist. With this knowledge, SCV Water recognizes that water savings, during droughts or other water shortages, will need to be driven through an escalation in marketing, increased programming, and enhanced incentives that rise as water shortage stages advance.

The goals of the Response Plan are to:

- Increase the speed that response actions can be rolled out by pre-planning.
- Reduce workload by providing a blueprint for deployment of strategic actions as water shortage stages are declared.
- Provide recommendations on the optimal measures, activity levels, incentives, and services that will drive water savings according to need.
- Act as a starting point for creating a final plan of action during a water shortage event. The finalized plan will include adjustments from customer input, new technologies, grants, or other circumstances.

The plan is devised to balance *customer incentives and programs* with *prohibitions and penalties*. This balance between "carrot and stick" will give SCV the flexibility to achieve optimal conservation through engagement and education while enticing customers to move to long-term market transformation through program participation. Enforcement would then serve as a "backstop" the agency could implement when conservation performance fails to achieve the respective water shortage level targets.

Types of Response Actions

There are many response actions available to SCV Water. These include supply augmentation, escalation of customer messaging content and frequency, expanded outreach channels, enhanced water efficiency incentives and programs, and as necessary, water usage restrictions.

• Supply Augmentation

Water supply augmentation includes water storage programs—where water supplies are stored in groundwater basins in wet years and removed in years of need—and water transfers (bulk purchases of water.)

• Expanded Outreach

Customer attitudes and expectations have changed dramatically over the past

decade, driven by consumers who have higher demands for expanded outreach vehicles. It's a customer-centric world and water agencies are competing for attention. This requires a modern approach to outreach including social media and influencer marketing.

Programs

Water efficiency programs provide customers with the means and guidance to lower their properties' water usage. Customer-friendly programs, substantial incentives, direct installation options and strong support services drive stronger response rates. The higher the services and incentives; the higher the customer response.

Restrictions

Watering restrictions further reduce water usage while reinforcing the message of community importance and "doing your part". If the reasoning is well communicated, this message can be highly effective in securing additional water savings and constitutes a powerful tool for agencies.

Response Action Process

Once the monitoring framework indicates that the region has reached a specific stage of water shortage condition, several actions will occur.

First, the Response Taskforce will assemble.

The Response Taskforce is the organizational group empowered to:

- 1. Create the Response Plan blueprint.
- 2. During water shortage stages, finalize strategic response actions.
- 3. Manage the implementation of response actions, according to plan.
- 4. Monitor supply and demand performance.
- 5. Adapt response plan and activity accordingly.

The taskforce is comprised of representatives from SCV Water management, conservation team, public affairs, and other public entities in the Valley.

The taskforce will make recommendations about the level of program and services, restrictions, and messaging to customers. These recommendations will be brought to management for approval.

The group will review the proposed actions set forth in the existing plan and make modifications as necessary. The plan was intended to be flexible and changeable. Modifications to the plan might include a change in incentive levels or program delivery mechanisms. There may also be a new water-saving technology that should be offered to customers. The taskforce might be able to secure additional grant funding, as well. Once the action plan is finalized and approved, the taskforce will advise the agency and SCV

Water will manage the implementation of the programs, penalties, and communications plan.

An overview of the response process is below:

Figure 5: Response Action Process

Response Action Objectives & Strategy

The objectives of the Response Plan are to integrate the response actions into a cohesive whole that improves the effectiveness of each component. The plan's objectives are to:

- Outline programs that are highly appealing to customers.
- Provide targeted marketing and communications for programs and restrictions.
- Guide escalation of response actions as water shortage stages increase.
- Allow for a consistent regional rollout that reduces customer confusion, raises response, and increases savings per household.
- Ensure communication, marketing, programs, and restrictions are interconnected and support each other in achieving water savings goals.

SCV Water's overall strategy is straightforward, *prioritize water waste and high-savings opportunities*.

Customer Engagement Strategy

Figure 6: Response Plan

Interconnectivity of Response Actions

The Plan's strategy and tactics are devised to effectively communicate, motivate, and gain participation from customers in ever-increasing stages. There is an interactivity between these strategic components that, when performed effectively, creates synergy and heightened response. This happens when multiple, successful marketing initiatives combine to create an effect greater than the sum of the individual parts.

Quality targeting drives better outreach, which in turn creates a larger community of people. These people become influencers and they help agencies to "sell" the programs, services and messages to others in the community. When rebates and direct installation is added, response increases even further. And lastly, increased restriction and penalties will ultimately drive savings up. When the Plan functions in this synergistic fashion, full goal attainment is achievable.

Figure 7: Interconnectivity of Response Actions

Table 4 aligns the shortage response actions to each shortage stage. Note that the Ordinance Sections 3 and 4 contain recommendations and restrictions that are in place even when there is no shortage, and what is described below is in addition.

Table 4: Water Shortage Contingency Plan Stages

	Water Shortage Contingency Plan Stages
Water Shortage Stage	Shortage Response Actions
Water Shortage Stage 1:	Groundwater/banking/transfers
(Voluntary - up to 10%	Program: Lawn Replacement Rebates
reduction)	Program: Smart Controller and Irrigation RebatesOnline Store
	Program: Home Surveys
	Program: Irrigation Tune-up and Leak Detection Device Incentives
	Messaging importance of water efficient property to prepare for future shortages
	Outreach to increase Lawn Replacement Program and smart irrigation
	Watering restrictions in Section 4 of the Ordinance become mandatory; continue general (non-shortage) recommendations (Section 3) in the Ordinance
Water Shortage Stage 2:	Groundwater/banking/transfers
Moderate Shortage (Voluntary - up to 20%	Programs remain the same
decrease in water use)	Messaging Watch Condition "Moderate Shortage"
	Begin profiling, targeting, messaging high potential customers
	Escalate efforts at compliance with general recommendations in Section 3 and restrictions (mandatory >=Stage 1) listed in the Ordinance.
	Communicate, ask everyone to do their part to save
Water Shortage Stage 3:	Groundwater/banking/transfers
Significant Shortage (Voluntary - up to 30% decrease in water use)	Programs w rebates remain the same
	Program: Virtual irrigation controller programming assist.
	Program: Direct installation of smart irrigation controllers and nozzles
	Program: Increase Home Surveys
	Messaging Watch Condition "Significant Shortage"
	Continue profiling, targeting, messaging high potential customers
	Introduce influencer marketing (role models, respected community members, active HOAs)
	Continue escalated efforts at compliance with general recommendations in Section 3 and restrictions (mandatory >= Stage 1) listed in the Ordinance.

	Water Shortage Contingency Plan Stages
Water Shortage Stage 4:	Groundwater/banking/transfers
Severe Shortage (Mandatory - up to 40%	Programs: Continue and increase incentives for nozzles and controllers
decrease in water use)	Program: Continue virtual irrigation controller assist
	Messaging Watch Condition "Emergency, Significant Shortage"
	Expand targeting to include mid- and high-water customers
	Ramp up influencer marketing
	Additional staff for expanded communication and enforcement
Water Shortage Stage 5:	Groundwater/banking/transfers
Critical Shortage (Mandatory – up to 50%	Program: Continue virtual irrigation controller assist
decrease in water use)	Program: Increase incentives and direct installation
	Suspend Lawn Replacement Program promotions
	Messaging "Critical Condition" and urgency
	Restrictions: implement emergency alerts and media coverage
Water Shortage Stage 6:	Groundwater/banking/transfers
Super Critical Shortage (Mandatory – greater than 50%	Programs: Only offer leak detection and repair programs
decrease in use and water for	Suspend all landscape & irrigation programs
essential use only)	Messaging "Super Critical Shortage"
	Crisis messaging; Announce Water for Essential Use Only

Strategy per Water Shortage Level

Tactics for shortage stages will expand as drought levels escalate. SCV Water will increase staffing capability, add more customer support, and provide a higher level of program incentives and services as increased water shortage stages are declared.

At **Level Zero**, a non-shortage level, programs and incentives will continue to be offered to customers at current levels. During this time, the goal will be to encourage and incentivize customers to create drought sustainable properties in advance of an emergency. The focus will be on turf replacement programs and customer education offerings.

Once a water shortage enters a specific Level, the taskforce will assemble to finalize the Response Plan for that Level and begin the implementation process for customer targeting and increased outreach.

For all shortage Levels the <u>first priority</u> leverages existing storage and water banking investments to result in supply augmentation.

- At Level 1, the goal is up to a 10% water use reduction. The proposed plan is to target high use potential customers, customers that are using water inefficiently. The proposed programs would likely stay the same. The outreach will enforce the importance of water efficiency as a preparedness for heightened shortages and continue voluntary restrictions.
- The goal for **Level 2**, or a moderate shortage is up to 20% reduction in water use. The proposed focus for Level 2 is to expand activity for irrigation equipment direct installation programs and ramp up outreach providing customers with understanding of a Moderate Shortage is and asking everyone to do their part.
- The goal for Level 3, or a significant shortage, is to achieve up to a 30% decrease in water use. Tactics for Level 3 may require incentive increases for landscape and irrigation rebates and direct installation programs, expansion in outreach to customers so there's an understanding of what a significant shortage is as well as escalation of water waste prohibition and enforcement.
- The goal for Level 4, or a critical shortage, is up to mandatory 40% decrease in water use. The Level 4 proposal is for SCV Water to increase incentives for measures like sprinkler nozzles and smart controllers, expand targeting to included mid-range water users, expand outreach so the community knows there is a critical shortage condition and expand water waste enforcement.
- The goal for **Level 5**, or an emergency condition, is a mandatory 50% reduction in water use. Level 5 may require SCV Water to heighten the message of urgency and put forth a community call to action. Additionally, there will be an increase in implementation of emergency alerts and expanded news and social media outreach notifying customers of up to a 50% decrease in water use.
- During Level 6, or a catastrophic shortage, includes mandatory reductions greater than 50%. In this event, it's likely <u>only</u> indoor plumbing and property leak detection programs will be offered. It's proposed that all landscape & irrigation programs be suspended and SCV Water would implement messaging, announcing water for essential use only. SCV Water would conduct strict enforcement of water waste restrictions.

On the following pages are snapshots of the programs, messaging, and activities for each drought stage:

Level 1 Strategy

Goal: Up to voluntary 10% reduction. Customers create drought sustainable properties prior to emergency conditions. Consider increasing incentives if activity does not increase.

Programs:

- Lawn Replacement Rebates
- Smart Controller and Irrigation Rebates Consider Online store
- Home Surveys
- Consider Irrigation Tune-up Program and Leak Detection Device Incentive

Work to increase response for the Lawn Replacement Program and smart irrigation incentives through increased outreach and a higher level of linkage to support services.

Messaging: & Outreach: Reinforce the importance of creating/maintaining a water efficient property as preparedness for future water shortages.

Restrictions: Continue with current restrictions.

Level 2 Strategy

Goal: Up to a voluntary 20% decrease in water use.

Water Banking: SCV deploys groundwater/banking/transfers as deemed appropriate to reduce customer shortage request.

Programs: Programs remain the same.

Messaging & Outreach: Define Watch (Moderate Shortage) Condition and utilize in general customer messaging.

Begin profiling customers and micro-target high potential customers, utilizing messaging that will best resonate with those customers.

Restrictions: Consider escalation of local water waste prohibitions.

At this level, SCV will communicate to customers that there's a need to increase water efficiency levels and will ask everyone to do their part to save.

Level 3 Strategy

Goal: Voluntary/Mandatory 30% decrease in water use. 1

Water Banking: SCV deploys groundwater/banking/transfers as deemed appropriate to reduce customer shortage request.

Programs:

- Rebate programs remain the same.
- Provide virtual irrigation controller programming assistance.
- Consider direct smart irrigation installation programs (controllers and nozzles).
- Increase the volume of Home Surveys performed.

Messaging & Outreach: Define Warning (Significant Shortage) Condition to use in general customer messaging.

SCV continues profiling and micro-targeting of high potential customers. Introduce influencer marketing (role models, respected community members and active HOAs).

¹ Note that the Water Shortage Task Force would be responsible for recommending voluntary or mandatory status to SCV Water management which would then seek Board approval to implement mandatory actions and advise when voluntary.

Restrictions: Escalation of water waste prohibitions and enforcement. Increase regional outreach regarding prohibitions.

Level 4 Strategy

Goal: Up to a Mandatory 40% decrease in water use.

Supply Augmentation: SCV Water deploys groundwater/banking/transfers as available to reduce customer shortage costs.

Programs:

- Continue base programs and increase incentive amounts for high efficiency nozzles and smart controllers.
- Continue virtual irrigation controller programming assistance and smart irrigation direct installation programs.

Messaging & Outreach: Define Emergency (Severe Shortage) Condition and utilize as general customer messaging.

SCV expands profiling and micro-targeting to include mid-range water users as well as high-water use customers. Ramp up influencer marketing.

Restrictions: Hire additional local staff and set up operations for expanded customer communication and enforcement administration.

Level 5 Strategy

Goal: Up to a Mandatory 50% decrease in water use.

Supply Augmentation: SCV Water deploys groundwater/banking/transfers as available to reduce customer shortage costs.

Programs:

- Continue virtual irrigation controller programming, increased incentives, and smart irrigation direct installation.
- Suspend Lawn Replacement Program promotions.

Messaging & Outreach: Define Critical Condition and use as general customer messaging.

SCV strengthens the message of urgency and the community call to action.

Restrictions: Increase penalties, implement emergency alerts and new media coverage.

Level 6 Strategy

Goal: Mandatory 51+% decrease in water use.

Water Banking: SCV deploys groundwater/banking/transfers as available to reduce customer shortage costs.

Programs:

• Only offer leak detection and repairs programs.

• Suspend all landscape & irrigation programs.

Messaging & Outreach:

Define Catastrophic (Super Critical Shortage) Condition and utilize as general customer messaging.

Implement crisis messaging, announcing essential use only.

Restrictions: Conduct stringent enforcement of restrictions.

Table 5 summarizes the Water Shortage Contingency Plan Strategy per Shortage Stage/Level.

Table 5: Summary of Water Shortage Contingency Plan Strategy per Shortage Stage/Level

Shortage Stage	Goal		Demand Reduction Actions	Actions
		Potential Programs	Outreach	Restrictions
No Shortage	Create Resilient	Current Programs	Educate Importance of	Voluntary & General Water Use Efficiency
	Properties Prior to	Lawn Replacement	Efficiency as	Recommendations,
	Shortage	Irrigation Rebates	Preparedness for	
		Support & Education Services	Shortages	
STAGE 1	up to 10% Reduction	Programs Remain the Same	Increase Outreach	Continue with Voluntary General Water Use
			Reinforce Importance of	Efficiency Recommendations, Prohibited
			Efficiency	Water Waste Measures
			Target inefficient and	
			high use	
STAGE 2	up to 20% Reduction	Consider Addition of Sprinkler	Educate about Moderate	Applicable General Water Use Efficiency
		System Tune-up and Leak	Shortage	Measures, Prohibited Water Waste
		Detection Programs		Measures, Additional Measures (3 Days per
			Request Everyone to do	Week Watering, 10 Minutes per Watering
			Their Part	Station, Time of Day Restrictions)
STAGE 3	up to 30% Reduction	Add Virtual Sprinkler Timer	Educate about	Applicable General Water Use Efficiency
		Adjustment Assistance	Significant Shortage	Measures, Prohibited Water Waste
				Measures, Additional Measures (Irrigation
				limited to 3 Days per Week April – October, 2
				Days per Week November – March, 10
				Minutes per Watering Station, Time of Day
				Restrictions)
		Consider Direct Installation of	<u>Increase</u> Outreach	
		Irrigation Devices		

			Add Mid-range Users at	
			Target	
STAGE 4	up to 40% Reduction	Increase Incentive Amounts	Educate about <i>Critical</i>	Applicable General Water Use Efficiency
		for Sprinkler Nozzles & Smart	Shortage	Measures, Prohibited Water Waste
		Timers	Increase Outreach	Measures, Additional Measures (Irrigation
				limited to 2 Days per Week, 10 Minutes per
				Watering Station, Time of Day Restrictions)
STAGE 5	50% Reduction	Suspend Lawn Replacement	Educate about	Increase Penalties & Enforcement, Applicable
		Program	Emergency Shortage	General Water Use Efficiency Measures,
				Prohibited Water Waste Measures,
		Continue Installation &	Strengthen Urgency	Additional Measures (Irrigation limited to 1
		Support Programs	Message	Day per Week, 10 Minutes per Watering
			Send Emergency Alerts	Station, Time of Day Restrictions, No Potable
				Water for New Turfgrass Installations, Pool
				and Spa Fill Restrictions, No New Potable
				Water Service, No Potable Water Use for
				Grading, Potable Water May Not Be Used to
				Wash Vehicles, Except at Commercial
				Facilities that Recycled Water)
Stage 6	50+% Reduction	Suspend All Programs Except	Educate about	Conduct Strict Enforcement, Applicable
		Leak Detection & Repairs	Catastrophic Shortage	General Water Use Efficiency Measures,
				Additional Measures (No Irrigation Watering)
			Announce Water for	5
			Essential Use Only	

4.3. Operational Changes

A number of operational changes may be utilized at various shortage levels, and SCV Water utilizes a flexible approach whereby it looks for opportunities that meet supply needs at a given period of time. The following are examples:

- AMI Customer Portals can be utilized to convey water shortage messaging, water use within billing cycles, and potential alerts.
- Clusters of intermittent use can be identified and coordinated to maintain optimal supply (e.g., turnout constraints and rapid response customers).
- Well off-line periods can be reduced by fast tracking maintenance, or otherwise coordinating services.

4.4. Additional Mandatory Restrictions

SCV Water will consider mandatory restrictions if needed in addition to demand response actions mentioned above. These will be flexibly deployed for each on an as-needed basis. Table 6 provides a ranking of each water waste prohibition by stage. Note these are only the water waste measures, and they do not include other activities regulated in the ordinance (number of watering days, time restrictions, etc.).

Table 6: Water Waste Prohibitions--Ranking by Stage

					Stages	Ses			
			1	/ = Volu	V = Voluntary M = Mandatory	l = Man	datory		
Water Waste Measures	Outdoor/ Commercial	Savings Estimates	1	2	6	4	10	9	Notes
Allowing runoff onto non-irrigating areas when irrigating with potable water.	Outdoor	Up to 50%	Σ	Σ	Σ	Σ	Σ	Σ	Irrigation runoff is a significant contributor to water waste in SCV. With mostly clay soils in the valley, which absorb water at .2 inches/hour, and with average sprinklers applying ~3 inches/hour, watering times should be limited to no more than 3-5 minutes. However, this can be increased to 30 minutes when using High Efficiency Nozzles 20 minutes for drip.
Using hoses with no shutoff nozzles to wash cars.	Outdoor & Commercial	100-250 gallons per event	Σ	Σ	Σ	Σ	Σ	Δ	SCV Water provides free Water Efficiency Kits to customers upon request which include HE Showerheads, Hose Nozzles, HE Kitchen and Bathroom Aerators, Toilet Leak Detection Dye Tablets, Drip Gauges, and Flow Rate Bags to measure volumes. Consider working with carwashes that recycle water to promote additionally efficiency opportunities during a shortage.
Using potable water to wash sidewalks, driveways, and hardscapes	Outdoor & Commercial	100-250 gallons per event	Σ	Σ	Σ	Σ	Σ	Μ	SCV Water can provide brooms as part of its Drought Residential Check-Up service. Historically, customers have provided feedback on issues like washing dog feces, house cleaning and etc.
Using potable water in decorative water features that do not recirculate water	Outdoor	~80% of annual ET X surface area	Σ	Σ	Σ	Σ	Σ	Σ	Utilizing recirculating pumps on fountains is a smart feature and improves efficiency by eliminating single-pass use.

There are 3 weather stations in the Valley and these should be used in the agency's measurement. If all three stations report >.25 inches, the agency would enforce Stages 1-6.	SCV Water could monitor irrigation meters and applicable water efficiency targets.	Most, if not all, medians were converted during the last drought. The use of potable water for turfgrass on medians provides no functional purpose.	SCV Water starts with engagement and education, increased to enforcement at higher stages.	SCV Water starts with engagement and education, increased to enforcement at higher stages.
Σ	Σ	Σ	>	>
Σ	Σ	Σ	>	>
Σ	Σ	Σ	>	>
Σ	Σ	Σ	>	>
Σ	Σ	Μ	>	>
Σ	Σ	Σ	>	>
500+ gallons per event	26% over MWELO design standards	~40 gallons per sq. ft. per year	4-8 gallons per load + water and ice per glass	% of total laundry load
Outdoor	Outdoor	Outdoor	Commercial	Commercial
Irrigating Outdoors during and within 48 hours following measurable precipitation (quarterinch or more)	Irrigation with potable water of landscapes outside of newly constructed homes and buildings in a manner inconsistent with regulations or other requirements established by the California Building Standards Commission and the Department of Housing and Community Development, including the Model Water Efficient Landscape Ordinance updated by the State as required by AB 1881 and Executive Order B-29-15 issued by Governor Brown on April 1, 2015.	The irrigation with potable water of ornamental turf on public street medians.	The serving of drinking water other than upon request in eating or drinking establishments, including but not limited to restaurants, hotels, cafes, cafeterias, bars, or other public places where food or drink are served and/or purchased.	Hotels and motels must offer their guests the option to not have their linens and towels laundered daily, and prominently display this option in each guest room.

4.5. Emergency Response Plan

SCV Water periodically updates its Emergency Response Plan (ERP) to ensure restoration of water service for essential use in the Valley if a catastrophic supply interruption--a power outage, earthquake, or other non-dry period related emergency—were to temporarily interrupt water supply. This plan is not publicly available but identifies actions to be taken if there is a catastrophic supply interruption. SCV Water staff responsible for water transportation, treatment, and distribution have established the ERP to guide assessment, prioritization, and repair of SCV Water facilities potentially damaged during such a disaster.

Catastrophic supply interruptions enter into the SCV Water determination of water supply shortages. Specific water shortage levels are not directly tied to supply interruptions as the nature of the interruption and the availability of alternative supplies can mitigate any shortage level experienced by SCV Water customers. To the extent that supply interruptions contribute toward the total SCV Water system shortage, the response actions associated with the determined water shortage level from this WSCP will apply.

4.6. Seismic Risk Assessment and Mitigation Plan

For its own facilities, SCV Water is completing a Seismic Risk Evaluation and Mitigation report that will appear as Appendix C when available. SCV Water has also contributed toward seismic mitigation on the State Water Project (SWP).

SWP Seismic Improvements

DWR's recent SWP seismic resiliency efforts have focused heavily on SWP Dam Safety. The most prominent is the joint USBR/DWR corrective action study of Sisk Dam which will result in a massive seismic stability alteration project, which is expected to begin construction in 2021. Similarly, Perris Dam had a major foundation modification and stability berm added to the downstream face which has resulted in the removal of the DSOD imposed storage restriction. Several analyses have been conducted on SWP dam outlet towers/access bridges which has resulted in seismic upgrades (some including the Castaic outlet tower described below are on-going). Dam seismic safety evaluations are being performed on the Oroville Dam embankment and the radial gate control structure on the flood control spillway.

At Castaic Lake DWR is undertaking a project to retrofit the bridge that provides access to the outlet tower. As part of a statewide effort to reduce seismic and hydrologic risk to SWP facilities, DWR's Castaic Dam Modernization Program begin in the fall of 2020. In its most recent inspection, the California Division of Safety of Dams (DSOD) rated Castaic Dam as fair – meaning there are no existing dam safety deficiencies that will impact the dam's functions under normal conditions. However, improvements can be made to prevent serious impacts after either an extreme weather or earthquake event. Studies indicate that the outlet structures (the large towers that allow DWR to release water from the reservoir) are vulnerable to collapse in a major earthquake. While this

would not cause the dam to fail, it would significantly reduce DWR's ability to release water reliably therefore slowing the delivery of water to customers.

Although not directly an impact on SCV Water, seismic retrofits have also been completed on 23 SWP bridges located in four Field Divisions with additional retrofits in various development stages. DWR has also updated the earthquake notification procedures and has replaced and expanded instrumentation for the SWP's seismic network.

Emergency Freshwater Pathway Description (Sacramento-San Joaquin Delta)

It has been estimated by the California Department of Water Resources (DWR) that in the event of a major earthquake in or near the Delta, water supplies could be interrupted for up to three years, posing a significant and unacceptable risk to the California business economy. A post-event strategy would provide necessary water supply protections to avert this catastrophe. Such a plan has been coordinated through DWR, Corps of Engineers (Corps), Bureau of Reclamation (Reclamation), California Office of Emergency Services (Cal OES), the Metropolitan Water District of Southern California and the State Water Contractors.

DWR Delta Flood Emergency Management Plan

The Delta Flood Emergency Management Plan (DWR, 2018) provides strategies for response to Delta levee failures, up to and including earthquake-induced multiple island failures during dry conditions when the volume of flooded islands and saltwater intrusion are large, resulting in curtailment of export operations. Under these severe conditions, the plan includes a strategy to establish an emergency freshwater pathway from the central Delta along Middle River and Victoria Canal to the export pumps in the south Delta. The plan includes the prepositioning of emergency construction materials at existing and new stockpile and warehouse sites in the Delta, and development of tactical modeling tools (DWR Emergency Response Tool) to predict levee repair logistics, timelines of levee repair and suitable water quality to restore exports. The Delta Flood Emergency Management Plan has been extensively coordinated with state, federal and local emergency response agencies. DWR, in conjunction with local agencies, the Corps and Cal OES, conduct tabletop and field exercises to test and revise the plan under real time conditions.

DWR and the Corps provide vital Delta region response to flood and earthquake emergencies, complementary to Cal OES operations. These agencies perform under a unified command structure and response and recovery framework. The Northern California Catastrophic Flood Response Plan (Cal OES, 2018) incorporates the DWR Delta Flood Emergency Management Plan. The Delta Emergency Operations Integration Plan (DWR and USACE, 2019) integrates personnel and resources during emergency operations.

Pathway Implementation Timeline

The Delta Flood Emergency Management Plan has found that using pre-positioned stockpiles of rock, sheet pile and other materials, multiple earthquake-generated levee

breaches and levee slumping along the freshwater pathway can be repaired in less than six months. A supplemental report (Levee Repair, Channel Barrier and Transfer Facility Concept Analyses to Support Emergency Preparedness Planning, M&N, August 2007) evaluated among other options, the placement of sheet pile to close levee breaches, as a redundant method if availability of rock is limited by possible competing uses. The stockpiling of sheet pile is vital should more extreme emergencies warrant parallel and multiple repair techniques for deep levee breaches. Stockpiles of sheet pile and rock to repair deep breaches and an array of levee slumping restoration materials are stored at DWR and Corps stockpile sites and warehouses in the Delta.

Emergency Stockpile Sites and Materials

DWR has acquired lands at Rio Vista and Stockton as major emergency stockpile sites, which are located and designed for rapid response to levee emergencies. The sites provide large loading facilities, open storage areas and new and existing warehousing for emergency flood fight materials, which augment existing warehousing facilities throughout the Delta. The Corps maintains large warehousing facilities in the Delta to store materials for levee freeboard restoration, which can be augmented upon request of other stockpiles in the United States. Pre-positioned rock and sheet pile are used for closure of deep levee breaches. Warehoused materials for rapid restoration of slumped levees include muscle (k-rail) walls, super sacks, caged rock containers, sandbags, stakes and plastic tarp. Stockpiles will be augmented as materials are used.

Emergency Response Drills

Earthquake-initiated multiple island failures will mobilize DWR and Corps resources to perform Delta region flood fight activities within an overall Cal OES framework. In these events, DWR and the Corps integrate personnel and resources to execute flood fight plans through the Delta Emergency Operations Integration Plan (DWR and USACE, 2019). DWR, the Corps and local agencies perform emergency exercises focusing on communication readiness and the testing of mobile apps for information collection and dissemination. The exercises train personnel and test the readiness of emergency preparedness and response capabilities under unified command and provide information to help to revise and improve plans.

Levee Improvements and Prioritization

The DWR Delta Levees Subventions and Special Projects Programs have prioritized, funded and implemented levee improvements along the emergency freshwater pathway and other water supply corridors in the central and south Delta. These efforts are complementary to the Delta Flood Emergency Management Plan, which along with prepositioned emergency flood fight materials, ensures reasonable seismic performance of levees and timely pathway restoration after a severe earthquake. These programs have been successful in implementing a coordinated strategy of emergency preparedness to the benefit of SWP and CVP export systems.

Significant improvements to the central and south Delta levees systems along Old and Middle Rivers began in 2010 and are continuing to the present time. This complements substantially improved levees at Mandeville and McDonald Islands and portions of

Victoria and Union Islands. Levee improvements along the Middle River emergency freshwater pathway and Old River consist of crest raising, crest widening, landside slope fill and toe berms, which improve seismic stability, reduce levee slumping and create a more robust flood-fighting platform. Urban agencies, including Metropolitan, Contra Costa Water District, East Bay Municipal Utility District, and others have participated in levee improvement projects along or near the Old and Middle River corridors.

4.7. Shortage Response Action Effectiveness

The overall effect of water shortage response actions is to start with the expected unconstrained demand, apply supply augmentations and demand responses, and thereby demonstrate the level of service reliability. Table 7 provides estimates of demand response action effectiveness for each shortage stage.

Table 7: Demand Reduction Action Effectiveness

Shortage Stage	Demand Response Actions	How much is this going to reduce the shortage gap?
No Shortage	Create Resilient Properties Prior to Shortage	No Gap
Water Shortage Level 1: (Voluntary - up to 10% reduction)	Education	up to 5%
	Increased Cons. Program marketing	up to 3%
	Targeted Engagement	up to 1%
	Mandatory Prohibition	up to 1%
Water Shortage Stage 2: Moderate Shortage (Voluntary - up to 20% decrease in water use)	Education	5%
	Increased Cons. Program marketing	up to 3.5%
	Targeted Engagement	up to 10%
	Mandatory Prohibition	up to 3%
Water Shortage Stage 3: Significant Shortage (Voluntary - up to 30% decrease in water use)	Educationabout Significant Shortage	5%
	Increased Cons. Program marketingConsider Direct Installation	up to 5%
	Targeted Engagement Add Mid- range users	up to 15%
	Mandatory Prohibition	up to 5%
Water Shortage Stage 4: Severe Shortage (Mandatory - up to 40% decrease in water use)	Educationabout Severe Shortage	up to 10%

Shortage Stage	Demand Response Actions	How much is this going to reduce the shortage gap?
	Increased Cons. Program Incentives	up to 6%
	Targeted Engagement Broaden	up to 15%
	Mandatory Prohibition	up to 5%
Water Shortage Stage 5: Critical Shortage	Educationabout Critical Shortage	up to 10%
(Mandatory - 50% decrease in water use)		
	Suspend Lawn Replacement Programs, Continue Installation and Support Programs	up to 6%
	Targeted Engagement Broaden	up to 15%
	Mandatory Prohibition	up to 25%
Water Shortage Stage 6: Super Critical Shortage (Water for essential use only)	Educate about Catastrophic Shortage	up to 10%
	Conservation: Suspend All Programs Except Leak Detection & Repairs	less than 1%
	Announce Water for Essential Use Only	up to 15%
	Mandatory Prohibition	up to 25%

Table 8 provides estimates for how much emergency restrictions of all outdoor uses would reduce 2020 demand using estimates from SCV Water's DSS model.

Table 8: Estimated Demand Reduction from Restricting all Outdoor Water Uses

Reduction in Outdoor Water Use	Total Demand, Predicted 2020 (AF)	Estimated Indoor Use (AF)	Estimated Outdoor Use (AF)	Reduced Demand (AF)	Estimated Reduction in Total Demand (%)
Base	68,900	26,182	42,718	0	0
25%	58,221	26,182	32,039	10,680	15.5%
50%	47,451	26,182	21,359	21,359	31.0%
75%	36,862	26,182	10,680	32,039	46.5%
100%	26,182	26,182	0	42,718	62.0%

Section 5: Communication Protocols

Following the record-breaking drought of 2012-2016, SCV Water's legacy agencies prioritized expansion of their water conservation and education outreach programs to emphasize water efficiency as a sustainable way of life, rather than solely a response to dry conditions or drought. Messaging has encouraged behavioral changes that can be sustained regardless of weather and uses tools and technology that can be implemented to permanently save water in homes and businesses, particularly outdoors where up to 70% of total water use occurs.

These efforts have helped solidify a conservation ethic across Southern California, supporting investments in conservation, recycling, and groundwater recovery since 1990. When combined with additional investments in storage, local supply development, and programs to increase water storage reserves in wet years, the region is well positioned to withstand future droughts. Still, in response to the challenges of climate change and other abnormal supply conditions, increased water efficiency will still be necessary. As those conditions become more prevalent, effective communication strategies and a common understanding of necessary actions between water agencies, the public, elected officials, and other key stakeholders become even more important should the district need to activate the WSCP. These relationships and communication tools must be well-established to be successful. To that end, water providers should aim to communicate to customers in the following areas:

Communication Plan Purpose

This section of the WSCP describes the basic communications strategies needed to help SCV Water effectively communicate vital information for each of the six standard water shortage levels that represent changes from normal reliability.

The six standard water shortage levels depicted in this communications plan correspond to progressively increasing estimated shortage conditions up to 10%, 20%, 30%, 40%, 50%, and greater than 50% shortage compared to the normal reliability conditions.

Key Audiences

Communicating to various stakeholders is essential during normal supply periods and becomes increasingly more involved during water shortages. Communicating to these audiences requires varying levels of involvement depending on the status of supply conditions. Feedback, research, and leveraging existing relationships are central to an effective communications plan. Staff will continue to coordinate closely with member agencies, stakeholders, and governing agencies on an ongoing basis to ensure appropriate messaging is culturally competent and provided in multiple languages to reflect the region's demographics.

Residents

- Single family homeowners
- Multi-family tenants

• Multi-family property owners

Businesses

- Commercial/Industrial/Institutional
- Homeowner Associations
- Building Industry Association and Developers
- Media Networks
- Rapid Response Network (from SCV Water's Demand Management Program)
- SCV Chamber of Commerce
- Valley Industry Association (VIA)
- Vendors/Contractors/Consultants doing business with SCV Water

Public/Community Agencies

- Educational Institutions
- Elected Officials and Community Leaders
- Community-based Organizations (CBOs): Non-profits, service clubs and fraternal organizations
- State and Federal Representatives and Staff
- City of Santa Clarita
- Los Angeles County
- Sanitation Districts of Los Angeles County
- School districts/educators/students
- Community Councils (Canyon Country Advisory Council; unincorporated areas Castaic, Acton and Agua Dulce)
- Area Public Information Officers Coalition
- Environmental Groups (Sierra Club; SCV Hiking Club)
- Watershed Interests

Partnerships

- Water Industry Association of California Water Agencies (state and federal);
 Southern California Water Committee; National Water Resources Association;
 Association of Water Agencies; Ventura County; neighboring water agency partners (i.e., Palmdale)
- Regulatory Agencies (California Department of Water Resources; State Water Resources Control Board; Regional Water Quality Board; etc.)
- Environmental Agencies (state and federal Fish and Wildlife)
- California Water Efficiency Partnership (CalWEP)
- Alliance for Water Efficiency (AWE)
- EPA WaterSense

Media

- Local media outlets (Signal, KHTS, SCVTV, etc.)
- Regional media (TV, newspaper, etc.)

Internal

- Agency staff
 - Office staff
 - o Field staff
 - Customer service
 - o Management
- Retail Divisions
- Board of Directors

Goals and Objectives

SCV Water's communications goals are rooted in the following guiding principles:

- Motivate key audiences to:
 - o Increase conservation
 - Follow voluntary or mandatory water use guidelines
 - o Participate in water-saving incentive programs
 - o Encourage family, friends, neighbors, and colleagues to do all of the above
- Raise awareness about:
 - Water shortage and/or drought conditions
 - o Water sources, supplies and reserves
 - o Local, regional and state regulations
- Educate key audiences about:
 - o Water supply reliability
 - Water infrastructure and delivery
 - Water quality
- Prepare the region for:
 - Varying water supply conditions
 - o Escalating supply shortage levels

Customer Outreach and Engagement Tools

Conservation as a way of life remains central to messaging during normal supply conditions. Regional rebate programs, indoor and outdoor water use efficiency, investments to maintain infrastructure, emergency preparedness, local supply programs, water quality, and regional supply reliability are among some of the themes that make up a normal supply period's communications mix to encourage ongoing conservation actions. Below is a snapshot of the various strategies involved:

Education

- Website
- Social media (boosted/promoted posts Facebook, Twitter, Instagram, YouTube, LinkedIn, NextDoor)
- Emails to customers (Constant Contact)
- Emails to local elected officials

- eNewsletters
- Media Relations (Press releases, advisories, interview, op-eds)
- FAQ sheet/Fact sheets
- ROBO Calls (all customers)
- Digital, print, and other paid media marketing
- Direct mail (bill messages/inserts, postcards, targeted letters)
- Community Events
- User class outreach
- Education outreach (school programs and gardening classes)
- Resources (conservation "how to" videos, irrigation guide)

Action

• Conservation Rebate Programs

Regulatory

- SCV Water Board Approved Ordinances
- Local/state prohibited actions (State Water Resources Control Board)

Customer Engagement Strategy / Key Communication Strategies

Our customer engagement strategy focuses on prioritizing water savings opportunities, which follows the steps/flow listed in the response plan below:

Figure 8: Response Plan

Water Shortage Communication Response Action Strategy

Water Shortage Level 1 Communications – up to 10% Reduction

This section addresses communications strategies SCV Water uses during periods of 10% water shortage conditions. In addition to the Agency's ongoing communications efforts, a 10% shortage would require the following elements:

Outreach Goal (level 1)

- Increase Outreach
- Reinforce importance of efficiency
- Target inefficient and high-water use

Outreach Response:	
Protocols for customers, general public and interested parties	Protocols for local, regional, and state government entities
E.g., social media posts, bill stuffers or newsletters, press releases, radio spots, television coverage, and blog posts	E.g., formal notifications, emergency communications

Water Shortage Level 2 Communications - up to 20% Reduction

In a more severe supply shortage or demand management period, SCV Water will continue actions outlined in Level 1 communications strategies, and add the following efforts, which are designed to address a 20% percent mandatory conservation under the WSCP:

Outreach Goal (level 2)

- Educate about Moderate Shortage
- Request everyone do their part
- Option for customized reports

Outreach Response:	
Protocols for customers, general public and interested parties	Protocols for local, regional, and state government entities
E.g., social media posts, bill stuffers or newsletters, press releases, radio spots, television coverage, blog posts, and customized water reports.	E.g., formal notifications, emergency communications

Water Shortage Level 3 and 4 Communications - up to 30% or 40% Reduction

In addition to Level 2 communications strategies, the following efforts will address an even more severe shortage of 30%-40% mandatory conservation under the WSCP:

Outreach Goal (level 3)	Outreach Goal (level 4)
Educate about significant shortage	Educate about critical shortage
Increase outreach	Increase outreach
Add Mid-range users at target	

Outreach Response:	
Protocols for customers, general public and interested parties	Protocols for local, regional, and state government entities
E.g., social media posts, bill stuffers or newsletters, press	E.g., formal notifications, emergency communications

releases, radio spots, television	
coverage, blog posts, and	
customized water reports.	

Water Shortage Level 5 – 6 Communications – 50% reduction or more

The severity of this level of the WSCP calls for immediate, extreme conservation measures and a focus on water use for health and safety only. As with previous levels, communications strategies at this level of the WSCP incorporate and build upon ongoing efforts.

Outreach Goal (level 5)	Outreach Goal (level 6)
Educate about emergency shortage	Educate about Catastrophic shortage
Strengthen urgency message	Announce water for essential use
Send emergency alerts	only

Outreach Response:		
Protocols for customers, general public and interested parties	Protocols for local, regional, and state government entities	
E.g., social media posts, bill stuffers or newsletters, press releases, radio spots, television coverage, blog posts, and customized water reports.	E.g., formal notifications, emergency communications	

Crisis Communications - Catastrophic Shortage

In the event of a catastrophic shortage due to an infrastructure failure and/or natural disaster, SCV Water will enact its crisis communications as part of our Agency's Emergency Response Plan. The Emergency Response Plan was developed in accordance with local, regional, state and federal emergency response guidelines to ensure a coordinated effort and effective response.

Response Action Process

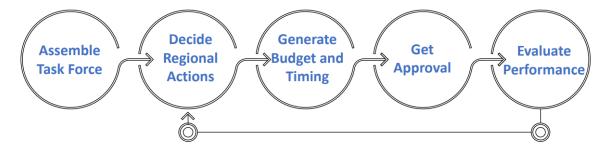


Figure 9: Response Action Process

Section 6: Compliance and Enforcement

Compliance and enforcement will be assured with the following methods:

- Letters of Noncompliance can be distributed with monthly bills to indicate water use above a designated level.
- Monthly efficiency goals can be communicated on bills (e.g., 55 gpd x 4 people + Landscape ETo).
- Water shortage service area inspections (patrols).
- Sending a general letter stating the rules for drought restrictions, with notification that patrols will drive through your area on a particular week. This way compliance is encouraged prioritizing education and engagement.
- SCV Water does not intend to utilize drought rates as a first response. Rather, financial impacts will be mitigated by planned use of reserve funds.

According to Section 11 of the Ordinance, "The General Manager and other authorized Agency representatives have the duty to enforce the provisions of the Ordinance consistent with this Section. The Agency's intent and goal in implementing the contents of this Section is to conserve water resources and generate the greatest benefit for the Agency customers during times of drought and water shortages. The Agency is committed to verifying complaints of excessive water use prior to deeming a customer is in violation and prior to taking enforcement actions. The Agency is focused on communication and education and enforcement as necessary." Section 11 contains scaled levels of actions it can take for the first, second, third, and greater violations that start with written notices and range to escalating fines and, ultimately, flow restriction. Appeals and Waivers (Section 12) are also included.

Section 7: Legal Authorities

The Agency has the legal authority to implement and enforce its water shortage contingency plan. California Constitution article X, section 2 and California Water Code section 100 provide that water must be put to beneficial use, the waste or unreasonable use or unreasonable method of use of water shall be prevented, and the conservation of water is to be exercised with a view to the reasonable and beneficial use thereof in the interest of the people and the public welfare. In addition, Water Code Section 375 provides the Agency with the statutory authority to adopt and enforce water conservation restrictions, and Water Code Section 350 et seq. authorizes the Agency to declare a water shortage emergency and impose water conservation measures when it determines that the Agency may not be able to satisfy ordinary demands without depleting supplies to an insufficient level. Lastly, the Agency is a Special Act Agency and has the authority to impose water conservation restrictions through Section 17 of the Santa Clarita Valley Water Agency Act, (SB 634, Chapter 833, 2017).

Pursuant to these authorities, the Agency is adopting the Water Conservation and Water Shortage Ordinance (WCWSO)in 2021, which prohibits the waste of water and imposes water conservation requirements on customers (see Appendix A). The WCWSO contains six stages of water shortage conditions with escalating water conservation requirements at each stage. These stages are consistent with the requirements of Water Code Section 10632(a)(3) and include the declaration of a water shortage emergency by the Agency Board of Directors depending on conditions at the appropriate stages. Such declarations will be made in accordance with Water Code Section 350. The WCWSO also provides for the enforcement of all requirements and restrictions, and has a process for appeals.

Section 8: Financial Consequences of WSCP

Implementing the WSCP will produce financial consequences to SCV Water that can be anticipated, including potential reductions in revenue and increased expenses associated with implementation of shortage response actions. Likewise, SCV Water can implement actions to mitigate these financial impacts.

Water Rate Structure

SCV Water has a uniform commodity rate within each division and a fixed monthly charge.

Use of Financial Reserves

SCV Water has two types of cash reserves, Restricted and Unrestricted. Restricted reserves are established and utilized for narrowly defined purposes as specified by legal restrictions, bond covenants, and other regulations or ordinances. The SCV Water can have restricted cash reserves for:

- Unspent Bond Proceeds
- Bond Redemption
- Water Conservation
- Grants

The utilization of unrestricted reserves is guided by the Unrestricted Reserve Fund Policy (Dec. 2020). This policy was developed to maintain prudent management of the Agency water system and to integrate the unrestricted cash reserves of the four divisions of the Agency: Regional (formerly wholesale), Newhall Water Division (NWD), Santa Clarita Water Division (SCWD) and Valencia Water Division (VWD). The policy identifies the sources of funding for such reserves, and target amounts for each reserve. The policy established reserve funds applicable to water shortage events:

<u>Water Supply Reliability Reserve</u> —This reserve is maintained to provide a source of funding for the extraction of water from groundwater banking programs or acquisition of other necessary water supply during dry years that will help to further mitigate rate increases.

<u>Revenue Rate Stabilization Reserve</u> — This reserve is maintained to provide the Agency with the ability and flexibility to avoid sharp increases in customers' rates.

<u>Emergency Reserves</u>—This reserve is established to provide additional liquidity in the event of a natural disaster, financial crisis, various economic uncertainties or financial hardships, loss of significant revenue sources, local disasters or capital obligations, cash flow requirements, unfunded mandates including costly regulatory

requirements and other such needs. These amounts should supplement monies received from insurance policies and by state and federal programs.

Use of these reserve funds is based on the recommendation of the General Manager and approval of the Board.

Should revenue shortfalls due to drought or shortage occur, SCV Water could consider the options of drawing from the appropriate reserve fund balances, deferring operation and maintenance and capital projects, or using water stored for emergencies. Multiple year water shortages may require consideration of additional changes to SCV Water's rate structure to maintain financial capacity to deliver reliable water supply to water customers and communities in the Santa Clarita Valley.

Potential Revenue Reductions and Expenses Associated with Activated Shortage

Potential revenue reductions and expenses caused by WSCP deployment will vary depending on shortage response actions. Customer reductions in water consumption will result in decreased revenue in shortage events. Some short run operating costs may be lower, but operations expenditures for customer outreach and shortage mitigation will be significantly higher, depending on the shortage level.

Potential Consequences of Limiting Excessive Water Use

SCV Water's Water Conservation and Water Supply Shortage Ordinance identifies specific water waste measures and includes an escalating framework aimed at greatly reducing wasteful and excessive uses of water. Should the Agency declare a water shortage stage, specific water waste activities would be prohibited. Additionally, since discouraging excessive use is a standard part of SCV Water's everyday practice, the financial consequences of prohibiting excessive use would be minimal.

Section 9: Monitoring and Reporting

SCV Water monitors and reports water supply and demand monthly, including forecasts of supply availability and weather/drought tracking. Water supply volumes from all supply sources and customer billing records are generated monthly. If the monthly goals of balancing supply and demand under shortage conditions are not being met, SCV Water can implement shortage response actions, including both supply augmentation and demand response. Baseline and demand reduction targets can utilize unconstrained demands, demand target as a percent, and weighted by month to determine success.

Section 10: WSCP Refinement Procedures

WSCP refinement procedures are used to ensure shortage risk tolerance is appropriate and that water shortage mitigation tactics are implemented when required. SCV Water plans to refine the WSCP at least every five years in conjunction with the UWMP updates, unless a shorter time frame is deemed appropriate by SCV Water.

Evaluation tracking will be implemented with each future WSCP deployment to evaluate the effectiveness of the water shortage response actions on demand levels. The evaluation logic model will document SCV Water programmatic shortage response and compare the expected percent demand reduction against actual reductions; by this means, the shortage response actions in the WSCP will be revised using the evaluation generated evidence. The success of customer outreach and communications will also be assessed to inform the next WSCP revision. The WSCP development will be considered a life cycle with the following steps:

- 1. Implementation
- 2. Monitoring
- 3. Performance Indicators
- 4. Assessment and Evaluation
- 5. Process to Refine and Improve the Plan
- 6. Adoption by the Board

Section 11: Special Water Feature Distinction

The Water Code requires us to analyze water features that are not pools or spas separately from pools and spas in the WSCP. Non-pool or non-spa water features may use or be able to use recycled water, whereas pools and spas must use potable water for health and safety considerations.

An addition difference between types of water features that is of particular consequence to SCV Water is that some water features are used as firefighting water supplies.

Thus, the Response Actions in this WSCP reflect the following considerations:

- For pools and spas, and any other water features with direct human contact, potable water is needed for health and safety considerations. And thus, restrictions on these water features are consistent with and complement restrictions on other potable water end uses. [Put in example here—something from the Response Actions]
- For water features that use recycled water, restrictions on these water features are consistent with, and complement, restrictions on other water features that use recycled water. [Put in example here....] For example, recycled water is used for golf courses and median strips in the SCV Water service area. To the extent recycled water can be used to replace scarce potable water supplies, this is incorporated in the plan.
- For water features that are part of the emergency supply for firefighting purposes, water restrictions should avoid impacting the availability of this supply. For example, lakes in the SCV Water service area that are used for fighting purposes are not subject to water use restrictions even in the highest Shortage Levels.

Section 12: Plan Adoption, Submittal and Availability

- 1. Staff Analysis
- 2. Management Review and Revise
- 3. Committee Review, Revise, and Approval
- 4. Board Adoption
- 5. Submit to DWR
- 6. Implement
- 7. Amend WSCP Outside UWMP Cycle

Resources and References

"2018 Santa Clarita Valley Water Report," prepared for: Santa Clarita Valley Water Agency and Los Angeles County Waterworks District 36, May 2019.

"Urban Water Management Plan Guidebook 2020," DRAFT August 2020, State of California, Natural Resources Agency Department of Water Resources, DRAFT August 2020.

"Jumpstart Water Shortage Toolkit - Tool #1: Model Water Shortage Contingency Plans," 2021 Update.

http://toolbox.calwep.org/wiki/Model Water Shortage Contingency Plans

"2015 Urban Water Management Plan for Santa Clarita Valley," Prepared for Castaic Lake Water Agency (CLWA), CLWA Santa Clarita Water Division, Newhall County Water District, Valencia Water Company, and Los Angeles County Waterworks District No. 36/Cooperating Agency. July 1, 2016, including June 6, 2017 Update.

"2017 Water Supply Reliability Plan Update," Prepared for Castaic Lake Water Agency, Final Report, 1 November 2017.

"2019 Santa Clarita Valley Water Agency, 5-Year Strategic Plan," https://yourscvwater.com/wp-content/uploads/2019/07/SCV-Water-2019-5-Year-Strategic-Plan.pdf

"Upper Santa Clara River Integrated Regional Water Management Plan," February 2014. https://yourscvwater.com/wp-content/uploads/2018/03/Integrated-Regional-Water-Management-Plan February-2014.pdf

Urban Water Management Planning, California Water Code Sections 10610-10656, <a href="http://leginfo.legislature.ca.gov/faces/codes_displayexpandedbranch.xhtml?tocCode=WAT&division=6.&title=&part=2.6.&chapter=&article="http://leginfo.legislature.ca.gov/faces/codes_displayexpandedbranch.xhtml?tocCode=WAT&division=6.&title=&part=2.6.&chapter=&article=

California's Most Significant Droughts: Comparing Historical and Recent Conditions (DWR, 2019) https://water.ca.gov/drought/

National Drought Mitigation Center – U.S. Drought Monitor https://drought.unl.edu/

Appendix A: SCV Water Conservation and Water Supply Shortage Ordinance

[Insert Final Water Conservation and Water Supply Shortage Ordinance Following Hearing and SCV Water Board of Directors Approval.]

Draft Ordinance Attached.

[This page intentionally left blank.]

ORDINANCE NO. XX

AN ORDINANCE OF THE BOARD OF DIRECTORS OF THE SANTA CLARITA VALLEY WATER AGENCY TO ESTABLISH WATER CONSERVATION AND WATER SUPPLY SHORTAGE RESTRICTIONS AND REGULATIONS

WHEREAS, the Santa Clarita Valley Water Agency (Agency) was created on January 1, 2018 by the Santa Clarita Valley Water Agency Act (SB 634, Chapter 833, 2017) and is the successor entity to the Castaic Lake Water Agency and Newhall County Water District, which were merged into SCV Water through SB 634; and

WHEREAS, pursuant to SB 634, Valencia Water Company, a former private retail water provider in the Santa Clarita Valley, was dissolved and its assets were transferred to the Agency in January 2018; and

WHEREAS Castaic Lake Water Agency, Newhall County Water District, and Valencia Water Company each had water conservation regulations in place and the Agency now desires to adopt one conservation ordinance to apply throughout its service area; and

WHEREAS, this Ordinance has six escalating stages of water shortage regulations and is consistent with new requirements in the Water Code for Urban Water Management Plans; and

WHEREAS, California Constitution Article X, Section 2 and California Water Code Section 100 provide that because of conditions prevailing in the state of California (State), it is declared policy of the State that the general welfare requires that the water resources of the State shall be put to beneficial use to the fullest extent of which they are capable, the waste of water or unreasonable use of or unreasonable method of use of water shall be prevented, and the conservation of such waters is to be exercised with a view to the reasonable and beneficial use thereof in the interest of the people and the public welfare; and

WHEREAS, in addition to Article X, Section 2, the Agency has the authority to adopt and enforce water conservation restrictions pursuant to Water Code sections 375 and 31026, and the Santa Clarita Valley Water Agency Act, (SB 634, Chapter 833 2017 Section 17); and

WHEREAS, pursuant to California Water Code Section 350, the Board of Directors is authorized to declare a water shortage emergency to prevail within its jurisdiction when it finds and determines that the Agency will not be able to or cannot satisfy the ordinary demands and requirements of water consumers without depleting supplies of the Santa Clarita Valley to the extent that there would be insufficient water for human consumption, sanitation, and fire protection; and

WHEREAS, because of persistent and unpredictable water conditions in the State, statutory requirements for water planning, and the declared policy of the State, the Agency hereby finds and determines that it is necessary and appropriate for SCV Water to adopt, implement, and enforce a water conservation program with stages of water shortage restrictions, including

emergency stages, to reduce the quantity of water used by consumers within SCV Water, to preserve water supplies, to prevent the waste or unreasonable use or unreasonable method of use of water, and to ensure that there is sufficient water for human consumption, sanitation, and fire protection.

NOW, THEREFORE, BE IT RESOLVED AS FOLLOWS:

<u>Section 1</u>. <u>Findings and Determinations.</u> The Agency hereby finds and determines that the above recitals are true and correct and incorporated herein.

Section 2. Rescission of Previous Regulations. Castaic Lake Water Agency Ordinance No. 44, Newhall County Water District Ordinance No. 117, and Valencia Water Company Rule 14.1 are hereby repealed and replaced by this Ordinance.

<u>Section 3</u>. <u>General Water Use Efficiency Recommendations</u>. The following recommendations are smart management practices for indoor and outdoor water use. Since more severe effects of a water shortage are often brought about due to wasteful water use habits carried over from times of sufficient supply, these certain water-use practices are encouraged at all times.

3.1 Outdoor Water Use Efficiency Recommendations

- a. Irrigation systems should be checked monthly for breaks and adjusted so that overspray, runoff and water waste are avoided.
- b. Repair all water system leaks within 24 hours of detection or before next scheduled watering cycle.
- c. Drip irrigation for plantings and high efficiency nozzles for turf should be considered where appropriate.
- d. Shredded bark mulch, spread at a minimum 3" depth, should cover all bare earth and landscape planting areas to help soil retain moisture and keep weeds from growing.
- e. Turf should be core aerated annually.
- f. Replace underutilized turf areas with low water use plants and mulch.
- g. Pool covers should be used to reduce evaporation.
- h. The following watering schedule should be maintained throughout the year during average rainfall years: December-January (1x/week), February, March and November (1-2x/week), April and October (2x/week), May and September (2-3x/week), June, July and August (3x/week). Irregularities in average temperatures could cause the actual scheduling to be adjusted either more or less.
- i. Due to mostly clay soils in the Santa Clarita Valley, where clay soils have slow absorption rates (~1/5 (.2) inches/hour), irrigation runtimes should incorporate a cycle-and-soak schedule to allow maximum absorption of applied water and to greatly reduce/eliminate runoff. Runtimes for each cycle should not exceed the amount of time it takes for runoff to occur (example if runoff occurs after 6 minutes, each cycle should be set to run no more than 5 minutes).

3.2 Indoor Water Use Efficiency Recommendations

- a. All leaks to faucets, toilets, and indoor pipes should be repaired immediately.
- b. WaterSense Certified devices for plumbing faucets, toilets, and showers should be used.
- c. Install 1.0 gallon per flush ultra-low-flow toilets or dual-flush toilets.
- d. Water-efficient Energy Star® appliances such as clothes washer and dishwashers should be used.
- e. Showers should be limited to 5 minutes.
- f. To promote water conservation, operators of hotels and motels should provide guests with the option of choosing not to have towels and linens laundered daily. The hotel or motel should prominently display notice of this option in each guestroom in a clear and easily understood manner.
- g. Eating or drinking establishments, including but not limited to restaurants, hotels, cafés, cafeterias, bars, or other public places where food or drink are served and/or purchased, should only serve drinking water upon request.

<u>Section 4</u>. <u>Watering Restrictions</u>. To promote water conservation and prevent the waste, unreasonable use or unreasonable method of use of water, each of the following actions are discouraged at all times:

- a. Allowing runoff onto non-irrigated areas when irrigating with potable water.
- b. Using hoses with no shutoff nozzles to wash cars.
- c. Using potable water to wash sidewalks, driveways, and hardscapes.
- Using potable water in decorative water features that do not recirculate the water.
- e. Irrigating outdoors during and within 48 hours following measurable precipitation (quarter-inch or more).
- f. Irrigation with potable water of landscapes outside of newly constructed homes and buildings in a manner inconsistent with regulations or other requirements established by the California Building Standards Commission and the Department of Housing and Community Development, including the Model Water Efficient Landscape Ordinance updated by the State as required by AB 1881 and Executive Order B-29-15 issued by Governor Jerry Brown on April 1, 2015.
- g. The irrigation with potable water of ornamental turf on public street medians.

Section 5. Stage 1 Water Shortage.

A Stage 1 Water Shortage condition exists when the Agency determines in its sole discretion that due to drought, state regulations, or other water supply conditions, a reduction in water use is necessary to make the most efficient use of water and appropriately respond to existing water and regulatory conditions. The water use reduction goal during a Stage 1 Water Shortage

condition is up to 10%. Upon declaration by the Agency of a Stage 1 Water Shortage condition, the following water conservation restrictions go into effect:

a. The actions described in Section 4 above are prohibited.

Section 6. Stage 2 Moderate Water Shortage

A Stage 2 Moderate Water Shortage condition exists when the Agency determines in its sole discretion that due to drought, state regulations, or other water supply conditions, a reduction in water use is necessary to make the most efficient use of water and appropriately respond to existing water and regulator conditions. The water use reduction goal during a Stage 2 Moderate Water Shortage condition is 10-20%.

- 6.1 <u>Additional Measures.</u> Upon declaration by the Agency of a Stage 2 Moderate Water Shortage condition, in addition to the requirements for a Stage 1 Water Shortage, the following water conservation restrictions shall be in effect:
 - a. Limits on Watering Days
 Outdoor irrigation of ornamental landscapes or turf with potable water is restricted to three (3) days per week. Customers with street addresses ending in an odd number (1,2,5,7,9) may only water on Monday, Wednesday, and Friday. Customers with street addresses ending in an even number (0,2,4,6,8) may only water Tuesday, Thursday, and Sunday. Outdoor irrigation of ornamental landscapes or turf with potable water is prohibited on Saturdays. Customers with multiple accounts on the same property must select either an even or odd address watering schedule for their property.
 - Limits on Watering Station Run Time (Duration)
 Outdoor irrigation of ornamental landscapes or turf with potable water is limited to no more than Two 5-minute cycles (10 Minutes Max.) per watering station (recommend Cycle & Soak Schedule See 3.1.i).
 - Watering Times (Time of Day)
 Outdoor irrigation of ornamental landscapes or turf with potable water must occur during the following timeframes:

November through April – 6 PM to 10 AM May through October – 8 PM to 9 AM

d. The watering time limitations in this Section do not apply to landscape irrigation zones that use drip irrigation and/or low precipitation rated High-Efficiency rotary nozzles (equal to or less than 1 inch per hour).

Section 7. Stage 3 Significant Water Shortage

A Stage 3 Significant Water Shortage exists when the Agency determines in its sole discretion that due to drought, state regulations, or other water supply conditions, a reduction in water use is necessary to make the most efficient use of water and appropriately respond to existing water and regulatory conditions. The water use reduction goal during a Stage 3 Significant Water Shortage condition is 20-30%.

- 7.1 Additional Measures. Upon declaration by the Agency of a Stage 3 Significant Water Shortage condition, in addition to the requirements for a Stage 1 and Stage 2 Water Shortage, the following water conservation restrictions shall be in effect. If there is a conflict between the restrictions in certain stages, the restrictions in the higher level stage will apply.
 - a. Limits on Irrigation Watering Days
 During the months of April, May, June, July, August, September, and
 October, outdoor irrigation of ornamental landscapes or turf with potable
 water is restricted to three (3) days per week. Customers with street
 addresses ending in an odd number (1,3,5,7,9) may only water on
 Monday, Wednesday and Friday. Customers with street addresses
 ending in an even number (0,2,4,6,8) may only water Tuesday, Thursday
 and Sunday. Outdoor irrigation of ornamental landscapes or turf with
 potable water is prohibited on Saturdays. Customers with multiple
 accounts on the same property must select either an even or odd address
 watering schedule for their property.
 - b. During the months of November, December, January, February and March, outdoor irrigation of ornamental landscapes or turf with potable water is restricted to two (2) days per week. Customers with street addresses ending in an odd number (1,3,5,7,9) may only water on Monday and Thursday. Customers with street addresses ending in an even number (0,2,4,6,8) may only water on Tuesday and Friday. Outdoor irrigation of ornamental landscapes or turf with potable water is prohibited on Wednesdays, Saturdays and Sundays
 - Limits on Watering Station Run Times (Duration)
 Outdoor irrigation of ornamental landscapes or turf with potable water is limited to no more than Two 5-minute cycles (10 Minutes Max.) per watering station (recommend Cycle & Soak Schedule See 3.1.i).
 - d. Watering Times (Time of Day)
 Outdoor irrigation of ornamental landscapes or turf with potable water must occur during the following timeframes:

November through April – 6 PM to 10 AM May through October – 8 PM to 9 AM

e. The watering time limitations in this Section do not apply to landscape irrigation zones that use drip irrigation and/or low precipitation rated High-Efficiency rotary nozzles (equal to or less than 1 inch per hour).

Section 8. Stage 4 Critical Water Shortage

A Stage 4 Critical Water Shortage exists when the Agency determines in its sole discretion that due to drought, state regulations, or other water supply conditions, a reduction in water use is necessary to make the most efficient use of water and appropriately respond to existing water and regulatory conditions. The water use reduction goal during a Stage 4 Critical Water Shortage condition is 30-40%.

- 8.1 <u>Additional Measures.</u> Upon declaration by the Agency of a Stage 4 Critical Water Shortage condition, in addition to the requirements for a Stage 1, Stage 2, and Stage 3 Water Shortage, the following water conservation restrictions shall be in effect. If there is a conflict between the restrictions in certain stages, the restrictions in the higher level stage will apply.
 - a. Limits on Irrigation Water Days
 Outdoor irrigation of ornamental landscapes or turf with potable water is restricted to two (2) days per week at all times. Customers with street addresses ending in an odd number (1,3,5,7,9) may only water on Monday and Thursday. Customers with street addresses ending in an even number (0,2,4,6,8) may only water on Tuesday and Friday. Outdoor irrigation of ornamental landscapes or turf with potable water is prohibited on Wednesdays, Saturdays and Sundays. Customers with multiple accounts on the same property must select either an even or odd address watering schedule for their property.
 - b. Irrigation Watering Times (Duration)
 Outdoor irrigation of ornamental landscapes or turf with potable water is limited to no more than Two 5-minute cycles (10 Minutes Max.) per watering station (recommend Cycle & Soak Schedule See 3.1.i).
- c. Irrigation Watering Times (Time of Day) Outdoor irrigation of ornamental landscapes or turf with potable water must occur during the following timeframes:

November through April – 6 PM to 10 AM May through October – 8 PM to 9 AM

e. Watering time limitations above do not apply to landscape irrigation zones that use drip irrigation and/or low precipitation rated High-Efficiency rotary nozzles (equal to or less than 1 inch per hour).

Section 9. Stage 5 Emergency Water Shortage

A Stage 5 Emergency Water Shortage exists when the Agency determines in its sole discretion that due to drought, state regulations, or other water supply conditions, an emergency situation exists that requires a significant reduction in water use in order to maintain sufficient water supplies for public health and safety. The water use reduction goal during a Stage 5 Emergency Water Shortage is 40-50%.

- 9.1 <u>Additional Measures.</u> Upon declaration by the Agency of a Stage 5 Emergency Water Shortage condition, in addition to the requirements for a Stage 1, Stage 2, Stage 3, and Stage 4 Water Shortage, the following water conservation restrictions shall be in effect. If there is a conflict between the restrictions in certain stages, the restrictions in the higher level stage will apply.
 - a. The recommendations in Section 3.2(f) and 3.2(g) above are mandatory.
 - b. Limits on Irrigation Water Days
 Outdoor irrigation of ornamental landscapes or turf with potable water is restricted to one (1) day per week. Customers with street addresses ending in an odd number (1,3,5,7,9) may only water on Monday.
 Customers with street addresses ending in an even number (0,2,4,6,8) may only water on Thursday. Outdoor irrigation of ornamental landscapes or turf with potable water is prohibited on Tuesdays, Wednesdays, Fridays, Saturdays and Sundays. Customers with multiple accounts on the same property must select either an even or odd address watering schedule for their property.
 - Irrigation Watering Times (Duration)
 Outdoor irrigation of ornamental landscapes or turf with potable water is limited to no more than Two 5-minute cycles (10 Minutes Max.) per watering station (recommend Cycle & Soak Schedule See 3.1.i).
 - d. Irrigation Watering Times (Time of Day)
 Outdoor irrigation of ornamental landscapes or turf with potable water must occur during the following timeframes:

November through April – 6 PM to 10 AM May through October – 8 PM to 9 AM

- e. No potable water may be used for new landscaping installed after the declaration of a Stage 5 Emergency Water Shortage except for drought tolerant plants requiring less than typical water requirements.
- f. No potable water may be used for any lawn, whether by seed or sod, established after the declaration of a Stage 5 Emergency Water Shortage.

- g. No pools or spas may be filled with potable water, but existing water levels may be maintained.
- No New Potable Water Service.

Upon declaration of a Stage 5 Emergency Water Shortage condition, no new potable water service will be provided, no new temporary meters or permanent meters will be provided, and no statements of immediate ability to serve or provide potable water service will be issued, except under the following circumstances:

- A valid, unexpired building permit has been issued for the project; or
- The project is necessary to protect the public health, safety, and welfare; or
- The applicant provides substantial evidence of an enforceable commitment that water demands for the project will be offset prior to the provision of a new water meter(s) to the satisfaction of the Agency.

This Section 9.1(h) does not preclude the resetting or turn-on of meters to provide continuation of water service or the restoration of service that has been interrupted for a period of one year or less.

- i. Potable water may not be used for grading.
- j. Potable water may not be used to wash vehicles, except at commercial facilities that recycle water.
- k. Street cleaning with potable water is prohibited.

Section 10. Stage 6 Catastrophic Water Shortage

A Stage 6 Catastrophic Water Shortage exists when the Agency determines in its sole discretion that due to drought, state regulations, or other water supply conditions, a catastrophic situation exists that requires a significant reduction in water use in order to maintain sufficient water supplies for public health and safety. The water use reduction goal during a Stage 6 Catastrophic Water Shortage is more than 50%.

- 10.1 <u>Additional Measures.</u> Upon declaration by the Agency of a Stage 6 Catastrophic Water Shortage condition, in addition to the requirements for a Stage 1, Stage 2, Stage 3, Stage 4, and Stage 5 Water Shortage, the following water conservation restrictions shall be in effect. If there is a conflict between the restrictions in certain stages, the restrictions in the higher level stage will apply.
 - No Irrigation Watering
 Water or irrigating of outdoor lawns, landscape, or other vegetated area with potable water is prohibited.

Section 11. Penalties & Enforcement

The General Manager and other authorized Agency representatives have the duty to enforce the provisions of this Ordinance consistent with this Section. The Agency's intent and goal in implementing the contents of this Section is to conserve water resources and generate the greatest benefit for the Agency customers during times of drought and water shortages. The Agency is committed to verifying complaints of excessive water use prior to deeming a customer is in violation and prior to taking enforcement actions. The Agency is focused on communication and education and enforcement as necessary.

- 11.1. Penalties for failure to comply with any provision of this Ordinance are as follows:
 - a. First Violation: A written notice will be provided to the customer by mail or personal delivery.
 - b. Second Violation: For a second violation within twelve (12) calendar months of the first violation, a written notice of non-compliance will be provided to the customer by mail or personal delivery and a fine of \$50 per violation will be imposed.
 - c. Third and Subsequent Violations: For a third violation within twelve (12) calendar months of the first violation, a written notice of non-compliance will be provided to the customer by mail or personal delivery and a fine of \$100 per violation and an increase of \$100 for each subsequent violation up to a maximum of \$500 per day will be imposed.
 - d. After a third violation within twelve months, the Agency may install a flow restrictor. It is the customer's responsibility to pay for the installation and removal of any such flow restrictor and the Agency may collect such costs from the customer. The Agency is under no obligation to provide sufficient fire flow to the customer after the third notice of violation within twelve months. This requirement is the sole responsibility of the customer.

11.2 Additional Penalties

- a. In addition to any fines and the installation of a water flow restrictor imposed pursuant to this Section, the Agency may shut off a customer's water service for willful violations of mandatory restrictions in this Ordinance.
- b. Leak Shut Off Irrigation Meters In instances where a leak is observed on the customer's side of a dedicated irrigation system or water meter, the Agency may immediately shut off such system and/or meter and may issue a notice of violation as provided for in this Ordinance. Water service will not be reinstated until such leak is repaired.

11.3 Separate Violations:

Each violation of this Ordinance is a separate offense.

11.4 Appeals:

The Agency will issue a Notice of Violation by mail or personal delivery. Customers may appeal a Notice of Violation by filing a written appeal with the Agency within ten (10) days of the date of the Notice of Violation. Any Notice of Violation not timely appealed will be final. Upon receipt of a timely appeal, a hearing on the appeal will be scheduled, and the Agency will mail written notice of the hearing date to the customer at least ten (10) days before the date of the hearing. The Agency's General Manager, or authorized delegate, shall serve as the hearing officer and make any and all decisions regarding any appeals. The Agency shall promptly send written notification of any decision and all decisions are final.

Section 12. Waivers

- a. Undue or Disproportional Hardship:
 - If, due to unique circumstances, a specific requirement of this Ordinance would result in undue hardship to a person using water or to property upon which water is used, that is disproportionate to the impacts to the water users generally or to similar property or classes of water users, then the person may apply for a waiver to the requirements as provided in this section.
- b. Establishment Waiver
 - Customers installing or renovating landscaped areas may qualify for a waiver if the Agency determines that additional watering is required to plant and maintain those landscaped areas for a limited amount of time. If such a determination is made, the Agency will provide the customer with an allowable watering schedule, which will include an allocated increase in water use, and when such watering schedule exception will expire. Any violation of the schedule will be punishable as described in this Ordinance. Approval of establishment waivers will be based on current conservation targets and the Agency's ability to meet those targets.
- c. Alternative Performance Compliance Waiver Customers with more than ten (10) active master-controlled smart weather-based irrigation controllers may qualify for the Alternative Performance Compliance Waiver. An Alternative Performance Compliance Waiver would relieve qualifying and approved customers from having to comply with the Limits on Watering Days, Limits on Watering Times (Duration), and Irrigation Watering Times (Time of Day) in Water Shortage Stages 2-5. In order to qualify, customers with more

than ten (10) active master-controlled smart weather-based irrigation controllers must agree to reduce their water use by the water use reduction goal percentage in each declared Stage of Water Shortage. Failure to comply with the applicable water use reduction goal percentage in the applicable declared Stage of Water Shortage will result in expiration of the waiver and such violations will be punishable as described in this Ordinance.

d. Application:

A person wishing to receive a waiver pursuant to this section must submit a written request/application to the Agency, which should include a statement describing the reasons for the request, a detailed watering schedule, duration of waiver, and any other relevant information to support the request, including but not limited to any photographs, drawings, or maps.

e. Written Finding:

The waiver may be granted or conditionally granted only upon a written finding of the existence of unique circumstances and facts demonstrating an undue hardship to a person using water or to property upon which water is used, that is disproportionate to the impacts to water users generally or to similar property or classes of water use due to specific and unique circumstances of the user or the user's property. The findings must also include a determination that, based on the information in the request/application and any other relevant information, a waiver does not constitute a grant of special privilege inconsistent with the limitations upon other residents and businesses.

f. Approval Authority

The General Manager or authorized delegate of the Agency must act on any completed application no later than ten (10) business days after submittal. The Agency may request a site visit, if needed, to verify or collect any missing information needed to make the final decision. The General Manager or authorized delegate may approve, conditionally approve, or deny the waiver request. The applicant requesting the waiver must be promptly notified in writing of any action taken. The decision of the General Manager or authorized delegate is final.

Section 13. CEQA Exemption

The adoption of this ordinance is not subject to the requirements of the California Environmental Quality Act ("CEQA"), or, alternatively, is exempt from CEQA. As only water conservation would result from the implementation of the Ordinance's provisions, the Ordinance would not commit the Agency to any action that would result in any significant environmental effects. As a result, per State CEQA Guidelines §15378, the Ordinance does not constitute a project subject to requirements of CEQA. Alternatively, the adoption of this Ordinance is exempt from CEQA under State CEQA Guidelines, §15061 (b)(3) and §15308 because CEQA only applies to projects that have the potential for causing a significant effect on the environment and it can be seen with certainty that there is no possibility that the Ordinance will have a significant effect on

the environment, and because the Ordinance would result in the conservation of water, a limited and currently scare resource, and would, therefore, have a beneficial effect on the environment. On this basis, and the on the basis of the information contained in the whole of the administrative record, the adoption of this Ordinance requires no further analysis under CEQA.

Section 14. Severability

If any provision of this ordinance or the application thereof to any person or circumstance is held invalid, such invalidity shall not affect other provisions or applications of the ordinance which can be given effect without invalid provision or application, and to this end the provisions of this ordinance are severable. The Board hereby declares that it would have adopted this ordinance irrespective of the invalidity of any particular portion thereof.

Section 15. Effective Date

This Ordinance shall become effective immediately upon adoption.

Appendix B: SCV Water Seismic Analysis

[This page intentionally left blank.]

2775 North Ventura Road, 202 Oxnard, CA 93036 805-973-5700

Seismic Risk Evaluation and Mitigation Report

4 May 2021

Prepared for

Santa Clarita Valley Water Agency

27234 Bouget Canyon Road Santa Clarita, CA 91350

KJ Project No. 2044228*00

[This page intentionally left blank.]

Table of Contents

Section 1:	Draf	it Seismic Risk Analysis	1-1
	1.1	Overview	1-1
	1.2	Water Storage Tank Evaluation Summary	1-1
	1.3	Water Treatment Facilities	
	1.4	Source Water Supply	1-11
		Booster Pump Stations	
		Mitigation Planning	

List of Tables

Table 1-1 Tank Design Use Group

Table 1-2 Anchorage, Freeboard, and Capacity Reduction Table 1-3 Rio Vista Treatment Plant Structures and Risks

Table 1-4 Earl Schmidt Filtration Plant Structures and Risks

List of Appendices

A Detailed Calculations-Pending

[This page intentionally left blank.]

Section 1: Draft Seismic Risk Analysis

1.1 Overview

The Act requires urban water suppliers to evaluate potential seismic risk to the facilities in their system and produce a mitigation plan. This section describes the review of the of the existing documentation and preliminary evaluation seismic risk of SCV Water's existing facilities. This section also provides recommendations for mitigation of the existing risks. Current structural design practice is to design structures for ground motion with a 2.5% probability of exceedance in any 50-year period. This design earthquake is highly dependent on conditions at any given location. Earthquake magnitude is an estimate of the total energy released by a given earthquake and cannot be directly translated into the design earthquake used for structural design. However, The U.S Geological Survey estimates that there is a 99% chance that California will experience a 6.7 magnitude earthquake within 30 years. The Current design earthquake has a lower probability of occurring than an earthquake of similar magnitude to the 1994 Northridge Earthquake, 6.7.

The facilities review as part of this assessment include approximately 45 well sites, 44 booster pump station, and 92 steel water storage tanks, the Earl Schmidt Filtration Plant (ESFP), and the Rio Vista Treatment Plant (RVTP). SCV Water was formed by the merger of CLWA, NCWD, SCWD and VWC. The facilities described in this report were constructed between 1961 and 2020. There are significant gaps in the construction documentation of many of these facilities. Final seismic risk mitigation planning will require site visits by a Structural or Civil Engineer experienced in design of water treatment facilities to evaluate the existing conditions. Where possible an initial determination of the seismic loads at the facilities has been determined in accordance with the 2010 Edition Minimum Design Loads Associate for Buildings and Other Structures (ASCE 7-10) using the web based Hazard Maps by the Applied Technology Council (ATC). The 2010 edition is was used in this stage because ASCE 7-16 as referenced in the current California Building Code (CBC) requires site specific geotechnical investigations for most conditions and structures. When implementing the final mitigation recommendations, a geotechnical investigation will be required for most of SCV Water's facilities.

1.2 Water Storage Tank Evaluation Summary

The seismic evaluation of SCV Water was conducted by applying the seismic design provision of the 2011 edition of Welded Carbon Steel Tanks for Water Storage by the American Water Works Association (AWWA D100-11). SCV Water currently operates over 90 steel water storage tanks. For our analysis we were provided the diameter, height to the overflow and maximum capacity of the storage tank. Using this information, ASCE 7-10 seismic parameters, and the seismic provision of AWWA D100-11, we determined the seismic loads, sloshing wave height, and anchorage requirements of SCV Water's storage tanks. We were provided with the overflow height rather than the maximum. Final design of welded and bolted steel water storage tanks is typically conducted by specialty contractors and submitted during construction. The construction drawings rarely indicate the final plate thicknesses, location and size of columns, size and location of anchors or other significant aspects of design beyond size and design criteria. Further field investigations will be required quantify further risk.

Storage tanks built prior to 1984 are unlikely to be compliant with current building standards and are unlikely to have been designed for lateral loads due to seismic events. Storage tanks built between 1984 and 2011 were probably designed with seismic loads however they may not be designed to withstand seismic loads determined in accordance with the current building code. Storage tanks designed after 2011 are likely designed to meet current building code requirements.

Table 1-1 Tank Design Use Group

AWWA D100-11 Design use Group and Seismic Importance Factor

Use Group	*Importance Factor, I _e	Description
I	1	Tanks that provide services to facilities deemed essential for post-earthquake recovery and essential to the life, health and safety of the public, including post-earthquake recovery.
II	1.25	Tanks that provide service to facilities that are deemed important to the welfare of the public
III	1.5	All Other

Note: *Importance Factor is used to amplify loads from earthquakes.

74 of the existing storage tanks require anchors and foundations. The remaining storage tanks will experience uplift due to seismic loads but do not require anchors at the foundation. It is our understanding that very few of the existing tanks are anchored or provided with concrete anchors. The sloshing wave height and required freeboard varies between seven and nine feet in height. We have not been provided the height of the roof framing, however, it is probable that in all cases, the required free board exceeds the distance from the bottom of the roof framing to the maximum operating water level.

Table 1-2 Anchorage, Freeboard, and Capacity Reduction

			Tank	Tank Geometry				Resn	Its of the Ana	Results of the Analysis in accordance with AWWA D100-11	th AWWA D100-1	Ξ	
						Seismic				Allowable Water		² Minimum	
Tank Site	Address	Date Built	Dia	Volume (gallons)	Overflow Height	Use Group	Importance Factor, I _e	Importance 'Overturning Factor, I _e Ratio, J	Anchors	Height to Prevent Uplift	Sloshing Height, d (ft)	Required Freeboard (ft)	³ Actual Freeboard
N Tank 1	21575 Deputy Jakes Way	1962	64	745,578	31	i≡	1.5	2.79	Unstable	23	9.87	9.87	
N Tank 1A	21575 Deputy Jakes Way	1995	132	3,069,307	30	≔	1.5	1.47	Stable	30	9.87	9.87	
N Tank 1B	23780 N. Pine Street	1995	09	634,154	30	≔	1.5	3.25	Unstable	20	9.87	9.87	
N Tank 2*	23554 Dockweiler Drive	1989	80	1,428,022	38	≔	1.5	4.36	Unstable	23	9.87	9.87	2
N Tank 3	23252 1/2 Haskell Vista Lane	1995	09	634,154	30	≔	1.5	3.19	Unstable	20	9.87	9.87	
N Tank 4	24548-1/2 Peachland Avenue	1994	09	634,154	30	≔	1.5	3.01	Unstable	21.5	9.87	9.87	
N Tank 4A	24548-1/2 Peachland Avenue	1975	06	1,450,628	30.5	≔	1.5	2.09	Unstable	26	9.87	9.87	2
N Tank 5	24001-1/2 Briardale Way	1983	09	465,047	22	≔	1.5	1.80	Unstable	19	9.87	9.87	2
N Tank 6	23500 The Old Road	1994	50	46,035	20	≔	1.5	7.55	Unstable	6.5	9.87	9.87	
N Tank 7	23071 1/2 Pine St.	2019	79	1,099,377	30	≔	1.5	2.24	Unstable	25	9.87	9.87	
C Tank 1A	33030 Ridge Route Rd	1999	130	3,076,236	31	≔	1.5	1.22	Stable	31	9.87	9.87	
C Tank 1D	32601 N. Ridge Top Lane	1998	95	1,490,967	30	≔	1.5	1.34	Stable	30	9.87	9.87	2
C Tank 2	28768-1/2 Greenwood Place	1988	09	613,016	53	≔	1.5	1.83	Unstable	26	9.87	9.87	ဧ
C Tank 3	31527U Valley Creek Rd	2016	99	767,327	30	≔	1.5	2.55	Unstable	23	9.87	9.87	
P Tank 1	29515 Poppy Meadow Street	2005	81	1,463,945	38	≔	1.5	2.49	Unstable	29.5	9.87	9.87	
P Tank 1A	29515 Poppy Meadow Street	1999	80	1,428,022	38	≔	1.5	2.51	Unstable	29.5	9.87	9.87	
P Tank 2	14751 Hydrangea Way	2004	95	1,490,967	30	iii	1.5	2.53	Unstable	2	9.87	9.87	2
P Tank 3	29251 Mammoth Lane	1993	80	1,127,386	30	≔	1.5	1.48	Stable	30	9.87	9.87	
P Tank 4	15644 Nahin Ln	2007	46	410,016	33	≔	1.5	2.91	Unstable	20	9.87	9.87	
P Tank 4A	15644 Nahin Ln	2006	62	744,850	33	≔	1.5	2.27	Unstable	26	9.87	9.87	
T Tank 1	29505 Avenida Rancho Tesoro	2002	81	1,155,746	30	≔	1.5	1.17	Stable	30	9.87	9.87	2
T Tank 1A	29505 Avenida Rancho Tesoro	2002	8	1,155,746	30	≔	1.5	1.40	Stable	30	9.87	9.87	7
T Tank 2	29505 Avenida Rancho Tesoro	2003	89	814,536	30		1.5	1.53	Stable	30	9.87	9.87	2
T Tank 2A	29505 Avenida Rancho Tesoro	2003	89	814,536	30	≔	1.5	1.53	Stable	30	9.87	9.87	2

Note:
1. Overturning Ratio is determined in accordance with AWWA D100-11 Equation 13-36, J Greater than or Equal to 1.54 requires anchors to the foundation.
2. The minimum required freeboard is equal to the sloshing wave height for Use Group III and may be reduced for Use Group I and III.
3. Freeboard was only determined in cases were available documentation indicated the roof height.

1-3

			Tank	Tank Geometry				Results	Results of the Analysis in accordance with AWWA D100-11	accordance wi	ith AWWA D100-	11	
				Volume	Molfreyo	Seismic		orientificaçõe.		Allowable Water Height	Sloebing	² Minimum Recilited	3Actual
TankName	Address	Date Built	Dia	(gallons)	Height	Group	IE	Ratio, J	Anchors	Uplift	Height, d (ft)	Freeboard (ft)	Freeboard
Bouquet	Through RVTP west gate, past solar panels, through park gate, overlooking park	1984	105	2,006,834	31	≔	1.5	1.91	Provide Anchors	27.5	9.87	9.87	
No Longer in Service	22200 Pamplico Dr.	1971	09	0		≔	1.5						
No Longer in Service	22200 Pamplico Dr.	1971	09	0		≔	1.5						
Catala 3	22200 Pamplico Dr.	1978	104	1,397,207	22	≔	1.5	0.81	Uplift but Stable	22	9.87	9.87	
Catala 4	22200 Pamplico Dr.	1989	104	1,397,207	22	≔	1.5	0.81	Uplift but Stable	22	9.87	9.87	
Benz	On Copper Hill xs is Benz Rd.	1999	104	1,968,791	31	≔	1.5	1.93	Provide Anchors	27	9.87	9.87	
Copper Hill 1	22000 Beldove Ct.	1988	105	1,942,098	30	≔	1.5	1.44	Uplift but Stable	30	9.87	9.87	
Copper Hill 2	22000 Beldove Ct.	1988	105	2,006,834	31	≔	1.5	1.54	Uplift but Stable	31	9.87	9.87	
Mesa	27238 Bouquet Canyon (next to Rio Vista)	2013	170	3,733,290	22	≡	1.5	0.53	Tank Is Stable	22	9.87	9.87	
Seco 1	28801 Garnet Canyon Dr. (access road marked as Edison Rd. on map)	1999	73	970,015	31	≡	1.5	1.92	Provide Anchors	27	9.87	9.87	
Seco 2	28801 Garnet Canyon Dr. (access road marked as Edison Rd. on map)	1999	105	2,006,834	31	≔	1.5	1.48	Uplift but Stable	31	9.87	9.87	
Sky Blue 1	West side of Whites Canyon before it turns into Plum Canyon (top of hill)	1988	73	970,015	31	≔	1.5	2.19	Provide Anchors	25	9.87	9.87	
Sky Blue 2	West side of Whites Canyon before it turns into Plum Canyon (top of hill)	1999	104	1,968,791	31	≔	1.5	1.68	Provide Anchors	29.5	9.87	9.87	
Sky Blue 3	West side of Whites Canyon before it turns into Plum Canyon (top of hill)	2003	104	1,968,791	31	≡	1.5	1.68	Provide Anchors	29.5	9.87	9.87	
Sky Blue 4	West side of Whites Canyon before it turns into Plum Canyon (top of hill)	2007	104	1,968,791	31	≔	1.5	1.68	Provide Anchors	29.5	9.87	9.87	
Sky Blue East	28452 Hawks Ridge	1999	73	970,015	31	=	1.5	2.13	Provide Anchors	26	9.87	9.87	
Sky Blue North	28558 Santa Catarina	1990	105	2,006,834	31	ш	1.5	1.51	Uplift but Stable	31	9.87	9.87	
Honby 1	20251 Keaton St.	1981	132	3,990,099	39	≔	1.5	2.38	Provide Anchors	31	9.87	9.87	
Honby 2	20251 Keaton St.	1995	114	2,976,087	39	≔	1.5	2.68	Provide Anchors	29.5	9.87	9.87	
Nonby South	20225 Jennifer Ct.	1987	114	2,976,087	39	≡	1.5	3.06	Provide Anchors	28	9.87	9.87	
North Oaks 1	18501 Olympian Ct. follow signs to Helispot 107C	1974	73	719,689	23	≣	1.5	1.31	Uplift but Stable	23	9.87	9.87	
North Oaks 2	18501 Olympian Ct. follow signs to Helispot 107C	1980	146	3,880,062	31	≡	1.5	1.32	Uplift but Stable	31	9.87	9.87	
North Oaks 3	18501 Olympian Ct. follow signs to Helispot 107C	1995	130	3,076,236	31	≣	1.5	1.50	Uplift but Stable	31	9.87	9.87	Í

			Tank (Tank Geometry				Results	Results of the Analysis in accordance with AWWA D100-11	accordance w	vith AWWA D100	-11	
Tank Site	Address	Date Built	Dia	Volume (gallons)	Overflow Height	Seismic Use Group	lE	Overturning Ratio, J	Anchors	Allowable Water Height to Prevent Uplift	Sloshing Height, d (ft)	² Minimum Required Freeboard (ft)	³Actual Freeboard
North Oaks	18501 Olympian Ct. follow signs to Helispot 107C	2000	73	970,015	31	≔	1.5	2.38	Provide Anchors	25	9.87	9.87	
Lower Fair Oaks 1	17705 Heron Ln	1999	134	2,424,983	23	≔	1.5	0.84	Uplift but Stable	23	9.87	9.87	
Lower Fair Oaks 2	17705 Heron Ln	1999	134	2,424,983	23	≡	1.5	0.84	Uplift but Stable	23	9.87	9.87	
Sand Canyon	27200 Sand Canyon Rd. (Between 27230 and 27166 Sand Canyon Rd)	1979	58	142,708	31	≔	1.5	7.08	Provide Anchors	10	9.87	9.87	
Fairway	27201 Appaloosa Rd.	1999	104	1,460,716	23	≔	1.5	0.95	Uplift but Stable	23	9.87	9.87	
Dean 1	28613 Winterdale Dr.	1977	73	970,015	31	≔	1.5	2.14	Provide Anchors	26	9.87	9.87	
Dean 2	28613 Winterdale Dr.	1985	73	970,015	31	≔	1.5	2.14	Provide Anchors	56	9.87	9.87	
Placerita 1	16742 Placerita Canyon Rd.	1980	73	970,015	31	iii	1.5	2.71	Provide Anchors	23.5	9.87	9.87	
Placerita 2	16742 Placerita Canyon Rd.	1995	73	970,015	31	≔	1.5	2.71	Provide Anchors	23.5	9.87	9.87	
Golden Valley	Golden Valley Road before Robert C Lee Pkwy	2003	104	1,968,791	31	≔	1.5	2.18	Provide Anchors	26	9.87	9.87	
Live Oak	15126 Live Oak Springs Cyn Rd	1999	73	970,015	31	≔	1.5	2.34	Provide Anchors	25	9.87	9.87	
Friendly Valley 2	20092 Avenue of the Oaks (inside gated community)	1973	80	1,240,124	33	≔	1.5	3.04	Provide Anchors	23.5	9.87	9.87	
Friendly Valley 4	20092 Avenue of the Oaks (inside gated community)	1985	80	1,240,124	33	∷	1.5	3.04	Provide Anchors	23.5	9.87	9.87	
Friendly Valley 5	18623 Cedar Valley Way (inside private gate next to house overlooking 14fwy)	1979	09	486,185	23	≔	1.5	1.75	Provide Anchors	21	9.87	9.87	
Princess 1	25529 Mountain Pass Rd.	1980	73	970,015	31	≔	1.5	2.83	Provide Anchors	23	9.87	9.87	
Princess 2	25529 Mountain Pass Rd.	1987	73	970,015	31	iii	1.5	2.83	Provide Anchors	23	9.87	9.87	
Golden Valley	Oak Crest Dr.	2005	06	1,474,409	31	≔	1.5					9.87	
Ranch 1								2.43	Provide Anchors	24.5	9.87		
Golden Valley	Oak Crest Dr.	2005	06	1,474,409	31	≔	1.5	Ç				9.87	
RailCil 2		0000	7	750 047	č	iii	L	2.43	Provide Anchors	24.5	9.87	0 07	
Plum I	Definition Dr. (West cul-de-sac)	2007	2 5	970,015	0 6	≣ #		1.90	Provide Anchors	/7	9.87	9.07	
Fium 2	Dellison Di. (West cul-de-sac)	7007	2	970,013	0	=	 C:	1.30	Provide Anchors	/7	9.8/	9.07	
Cherry Willow 1	26833 Cherry Willow Dr.	2006	09	486,185	23	i	1.5	1.66	Provide Anchors	21.5	9.87	9.8/	
Cherry Willow 2	26833 Cherry Willow Dr.	2006	09	486,185	23	∷≡	1.5	1.66	Provide Anchors	21.5	9.87	9.87	
Upper Fair Oaks 1	17705 Heron Ln above Lower Fair Oaks Tanks (continue on access road)	1998	73	970,015	31	∷≡	1.5	2.70	Provide Anchors	23.5	9.87	9.87	

Draft Seismic Risk Evaluation and Mitigation Report, SCVWA UWMP cuansilarylominal seamenanaliningstribs.

9.87	9.87	9.87
9.87	9.87	9.87
23.5	23	23
Provide Anchors	Provide Anchors	Provide Anchors
2.70	2.81	2.81
1.5	1.5	1.5
Œ	≔	≔
31	31	31
970,015	970,015	970,015
73	73	73
1998	1981	1987
17705 Heron Ln above Lower Fair Oaks Tanks (continue on access road)	25198 Karie Ln	25198 Karie Ln
Upper Fair Oaks 2	Circle J 1	Circle J 2

Results of the Analysis in accordance with AWWA D100-11

Tank Geometry

										Allowable			
						Seismic				Water Height		-Minimum	
				Volume		Use		10verturning		to Prevent	Sloshing	Required	3Actual
Tank Site	Address	Date Built	Dia	(gallons)	Height	Group	ĮE	Ratio, J	Anchors	Uplift	Height, d (ft)	Freeboard (ft)	
Hasley Canyon	Firebrand, between 27840 & 27902, Castaic	1988	114	2,473,202		≔	1.5	2.34	Provide Anchors	32.5	9.87	9.87	
Round Mountain	Access end of Anza Drive, Valencia	1989	120	2,451,341	31	≔	1.5	1.77	Provide Anchors	29	9.87	9.87	
Post Office	Franklin Pkwy., west of Post Office, Valencia	1992	108	1,918,317	36	≔	1.5	2.82	Provide Anchors	28	9.87	9.87	
Magic Mountain 5	26975 Westridge Pkwy., Valencia	2001	135	3,095,237	38	≔	1.5	3.13	Provide Anchors	29	9.87	9.87	
Northbridge	Harwick Place, between 27659 & 27663, Valencia	1989	140	3,864,378	39	≔	1.5	2.18	Provide Anchors	33.5	9.87	9.87	
Rye Canyon	25112 Rye Canyon Loop, Valencia	2003	116	2,441,622	37.25	≔	1.5	2.37	Provide Anchors	31	9.87	9.87	က
Cal Arts	25841 Tournament Rd., Valencia	1996	109	1,538,141	22	≔	1.5	1.05	Uplift but Stable	22	9.87	9.87	
Villa	Yucca Place, between 30563 & 30568, Castaic	1990	99	673,261	31.2	≔	1.5	2.22	Provide Anchors	56	9.87	9.87	
Presley	30016 Hamlet Wy., Castaic (changed 1/06)	1989	99	673,261	31.2	≔	1.5	2.12	Provide Anchors	26.5	9.87	9.87	
Commerce Center 1	28636 Livingston Ave., Valencia	1999	68	1,155,236	30.33	≔	1.5	2.42	Provide Anchors	25	9.87	9.87	
Commerce Center 2	28636 Livingston Ave., Valencia	1999	68	1,155,236	30.33	≔	1.5	2.42	Provide Anchors	25	9.87	9.87	
Seco I	28400 Copper Hill, Saugus	1996	108	2,115,513	34.5	≡	1.5	1.94	Provide Anchors	31	9.87	9.87	
Seco II	28400 Copper Hill, Saugus	1998	116	2,336,119	34.5	≔	1.5	1.85	Provide Anchors	32	9.87	9.87	2
Benz	28820 Bellows Ct., Valencia	2008	104	1,888,670	33	∷	1.5	1.90	Provide Anchors	30	9.87	9.87	
4 Million	Access road end of Oakview Estates Drive, Valencia	2006	128	2,693,888	29.5	≡	1.5	1.74	Provide Anchors	28	9.87	9.87	က
Westridge	25774 Oak Meadow Drive., Valencia	2001	142	2,619,577	29.5	≔	1.5	1.76	Provide Anchors	28	9.87	9.87	က
Hillcrest 1	30400 Vineyard Ln., Castaic	1996	72	859,632	30.5	≡	1.5	1.77	Provide Anchors	28.5	9.87	9.87	
Hillcrest 2	30400 Vineyard Ln., Castaic	1999	71	845,539	30	≔	1.5	1.72	Provide Anchors	28.5	9.87	9.87	
Mtn. View 1	29238 Black Pine Wy., Saugus	2001	80	831,447	29.5	≔	1.5	1.74	Provide Anchors	26.5	9.87	9.87	က
Mtn. View 2	29238 Black Pine Wy., Saugus	2001	80	831,447	29.5	≔	1.5	1.74	Provide Anchors	26.5	9.87	9.87	က
Poe	26024 Kavenaugh Ln., Stevenson Ranch	1989	06	1,130,517	31	≔	1.5	2.79	Provide Anchors	24	9.87	9.87	
Sunset Pointe	25101 Sagecrest Cir., Stevenson Ranch	1995	86	1,397,438	30.5	i≡	1.5	2.53	Provide Anchors	25	9.87	9.87	
West Hills 1	28834 Bellows Ct., Valencia	2008	26	290,020	21	i≡	1.5	1.64	Provide Anchors	20	9.87	9.87	2
West Hills 2	28834 Bellows Ct., Valencia	2008	26	290,020	21	i≡	1.5	1.64	Provide Anchors	20	9.87	9.87	2
Stevenson Ranch	26748 Sandburn, Stevenson Ranch	1999	111	1,923,390	30.33	≔	1.5	2.12	Provide Anchors	26.5	9.87	9.87	
Note:													

Note:

1. Overturning Ratio is determined in accordance with AWWA D100-11 Equation 13-36, J Greater than or Equal to 1.54 requires anchors to the foundation.

2. The minimum required freeboard is equal to the sloshing wave height for Use Group III and may be reduced for Use Group I and II.

3. Freeboard was only determined in cases were available documentation indicated the roof height.

To determine if the storage tank walls and roof systems are adequate to resist potential seismic loads, field visits will be required to determine the existing plate thicknesses and structural sections used in construction. Further analysis will then be performed to determine the capacity of the storage tank structural system. For those storage tanks that required anchors, greater freeboard, or do not have the structural capacity to meet demand we recommend reducing the operating capacity and overflow height in order to reduce the seismic demands on the structures. Water storage tanks designed in accordance with AWWA D100 and D103 can be classified in one of three seismic use groups as described in Table 1. The initial analysis has been conducted assuming all of the storage tanks are in Use Group III, essential for postearthquake recovery and essential to the life, health and safety of the public, including postearthquake fire suppression. For those facilities that are not required for post-earthquake recovery, the use group may be designated as Use Group II, tanks that provide direct service to facilities that are teemed important to the welfare of the public. In rare cases they may be assigned to Use Group I, those that are not essential to the health and safety of the public. This will reduce the design seismic load by twenty-five percent and fifty percent. The final report will assess the impacts of this reduction on SCV Water's facilities and include tables summarizing our findings.

Field investigation are necessary to determine the structural capacity of the existing storage tanks. Thickness of the tank shells and roofs will be determined using an ultrasonic thickness gauge, the size number and location of columns will be determined. In our experience the most common mode of failure for steel storage tanks is buckling of the lowest shell plate.

1.3 Water Treatment Facilities

SCV Water's treatment facilities consist of the ESFP, RVTP, perchlorate treatment facility, and multiple PFAS treatment facilities under construction and design currently. We have recently found copies of several as-built drawing for the ESFP and RVTP facilities in Kennedy Jenks archives and are currently undergoing a more detailed analysis than was available previously. Analysis of the seismic loads will be in accordance with the ASCE 7-10 due to the current requirements of the California Building Code for site specific geotechnical investigations. Prior to the final mitigation planning, we recommend that a qualified civil or structural engineer visit the sites to verify existing conditions and that a geotechnical engineering firm be consulted to determine the current seismic design criteria. The results of that analysis will be included in the final report. The PFAS facilities are designed and constructed to current building standards and do not represent substantial risk to SCV Water or their customers.

ACI 350.3, Seismic Design of Liquid Containing Structures was not adopted until 2001, therefore, structures designed and built prior to 2001 are likely at risk to cracking due to earthquake forces. Liquid containing structure have generally been designed with long term durability and to limit cracking. This results in structures that tend to be resistant to earthquake loads. Structures at ESFP and RVTP also withstood the 1994 Northridge Earthquake. Those structures that were damaged were later repaired and strengthened. Lateral forces in concrete water retaining structures result in stress concentrations at corners. Review of the as-built drawings indicates that there may be insufficient reinforcing by current standards of practice. There is potential for cracking to occur as a result of earthquake loads. Tables 3 and 4 summarize the findings from the initial analysis of the treatment plants. It should be noted that where no specific risks were noted, field investigations and/or geotechnical investigations could reveal risks that were not observed in the available documentation.

Table 1-3 Rio Vista Treatment Plant Structures and Risks

Rio Vista Water Treatment Plant

	Structure	Date Built	Structural System	Lateral Load Path	Notable Risks
			Two Story Steel Braced Frame		Chevron braced frames exhibit poor seismic performance relative
-	Administration Building	1991		Complete	to other lateral systems.
7	Chemical Building	1991	Steel Framed Roof over Concrete Shear Walls	Complete	None Noted
			Steel Framed Roof over Concrete Walls with Chevron		Chevron braced frames exhibit poor seismic performance relative
က	Ozone Building	1991	Braced Frames	Complete	to other lateral systems.
		1991	Concrete Shear Walls		
4	Clarifier Filter Structures (2)	2008		Complete	None Noted
2	Control Room Building	2008	Steel Framed Roof over Cantilever Columns	Complete	None Noted
9	Maintenance -Equipment Building	1991	Metal Framed Roof over Concrete Shear Walls	Complete	None Noted
7	Chlorine Building	2008	Steel Framed Roof Over Concrete Shear Walls	Complete	None Noted
		1991	Circular Steel Tank with Concrete Floor		
œ	Sludge Thickness (2)	2008		Complete	None Noted
6	Water Level Control Structure	1991	Circular Concrete Tank	Complete	
9	Wash Water Recovery Basins (3)	2008	Concrete Slab-on-Grade with Sloped Walls	Complete	None Noted
Ξ	Clearwells (2)	1991	Cantilever Retaining Walls	Complete	None Noted
12	Pre-Ozone Contractor	1991	CIP Concrete Shear Walls, Steel Cantilver Columns	Complete	None Noted
			Steel Framed Roof over CMU Shear Walls and Steel		
13	Ozone Injection Station	2008	Framing	Complete	None Noted
14		2008	CIP Sub Grade Concrete Shear Wall	Complete	None Noted
15	Ammonia Injection Vault	1991			
16	Treated Water Vault	1991	Concrete Shear Walls	Complete	None Noted
17	Plant Water Pump Station	2008			
18	Sludge Pump Station	2008	CIP Concrete Shear Walls	Complete	None Noted
19	Intake Pump Station	1992	Subgrade CIP Concrete Vault	Complete	
20	Intake Pump Station Building	1992	CIP Concrete Roof over Steel Brace Frame		

Table 1-4 Earl Schmidt Filtration Plant Structures and Risks Earl Schmidt Filtration Plant

	Structure	Date Built	Structural System	Lateral Load Path	Risks
-	Chemical Building	1979	Wood truss roof over CMU shear walls	Complete	None noted
7	Operations Building	1979	Wood truss roof over CMU shear walls	Complete	None noted
2	Flocclation Basins	1979	CIP Concrete Shear Wall Basin	Complete	Potentially insufficient reinforcing at corners
9	Sedimentation Basin	1979	CIP Concrete Shear Wall Basin	Complete	Potentially insufficient reinforcing at corners
7	Clarifier	1979			
8	Filters	1979	CIP Concrete Shear Wall Basin	Complete	Potentially insufficient reinforcing at corners
6	Washwater Recovery Basins (2)	1979	CIP Concrete Shear Wall Basin	Complete	Potentially insufficient reinforcing at corners
10	Central Pumping Plant	1979	Pre-engineered Metal Building	Appears Complete	None Noted
11	Sludge Drying Bed (2)	1979	Concrete Slab-on-Grade with Sand Bedding	Complete	None Noted
12	Sludge Drying Bed Sump	1979	Sub Grade CIP Concrete Shear Walls	Complete	None Noted
13	Sludge Effluent Vault	1979	Sub Grade CIP Concrete Shear Walls	Complete	None Noted
14	Sludge Thickener	1979	Circular Steel Tank with Concrete Floor	Complete	None Noted

1.4 Source Water Supply

SCV Water's source water mainly consists of imported water that is stored in Castaic Lake Reservoir and more than 45 well sites. The Castaic Lake Reservoir is administered by the California Department of Water Resources and under the jurisdiction of the California Division of Safety of Dams. The Division of Safety of Dams inspects the Castaic Lake Dam on an annual basis and periodically reviews the stability of dams in light of improved design approaches. Review and analysis of the Castaic Lake Reservoir is out of scope of this project, however, it represents minimal risk do SCV Water due to the inspection and review by the Division of Damn Safety.

Due to lack of documentation, we have not conducted a systematic analysis of the well sites. Site visits by a qualified civil or structural engineer should be conducted in verify the existing conditions at each site. The typical well site consists of vertical turbine pumps embedded directly into the soil and represent minimal risk of failure during or after an earthquake. Above ground piping is generally rigid and also represents minimal risk of failure during an earthquake. It is typical for the piping systems at older well sites to lacksupport for lateral loads due to earthquakes. The inspections should take note of any pipe supports that are not anchored into concrete foundation.

1.5 Booster Pump Stations

Lack of available documentation of the Booster Pump Stations makes a detailed analysis of the risks impossible without site visits to verify the existing conditions. Pump stations may consist of above grade or below grade structures with multiple pumps wet wells, and additional equipment. Like steel water storage tanks older facilities are less likely to be designed for Those designed and build later than 2000 are unlikely to pose a substantial risk in the event of an earthquake. Site visits should verify the that existing equipment is anchored to the foundations and walls, and that there is an adequate load path to transfer lateral loads from the roof and walls to the foundations.

1.6 Mitigation Planning

SCV Water should identify which facilities are required to operate immediately following an earthquake, are required for the health and safety of the public, and those that are not either. The highest priority should be given to those facilities that supply fire suppression systems. The first step in mitigating the risks identified in this report will be to arrange for a civil or structural engineer experienced in design of water treatment and distribution systems to inspect SCV Water's facilities. Once SCV Water and Kennedy Jenks has identified the most critical and at risk facilities, SCV Water should consult with a geotechnical engineering firm to perform site investigations of the most crucial facilities to allow a qualified engineer to perform a more accurate and detailed analysis and provide the most appropriate mitigation efforts.

For those storage tanks that require anchorage and or have insufficient freeboard height to accommodate wave action the district may take immediate action to reduce the risk. As shown in Table 2, SCV Water may choose to reduce the operational capacity in order to prevent instability, increase freeboard, and reduce the sloshing wave height. SCV Water may determine

that some of the storage tanks are not required for immediate post-earthquake recovery and do not pose a substantial risk to human life. In those cases the Seismic Use Group will be reduced to reduce the required freeboard and demands do to seismic loads. This may result in no further action being required. Kennedy Jenks recommends providing anchors for all steel water storage tanks.

Appendix A: Detailed Calculations -

[This page intentionally left blank.]

Min Shell Thickness, Check his				
All conside Do tal Laboral Laborat Lab	1140 (07%) 978 1.50 (17%) 978 1.50 (000 000 000 000 000 000 000 000 000 00	100 100	1000 1000 1000 1000 1000 1000 1000 100
Table 20 Meinsun Required Prechand Freeboard Regist- D), R Overflow)	1 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 1000 1000 1000 1000 1000 1000 100	1119 1119 1119 1119 1119 1119 1119 111
Eq.13-53/54 (cg.13-52) Soothing Convective Design Wave Acoloration, All Health (d), ft.	5 5 6 6 6 6 6 6 6 6			1 2 2 2 2 2 2 2 2 2
Archor Conved	A	10 10 10 10 10 10 10 10	1	Control Cont
Weight of Weight of Bell Selection Shell and Overturing Bods Bods Bods Bods Bods Bods Bods Bods	1			
Coy 1357 Coy 1 Wed Maximum Resting She Wedglift of the Trank Re- Contents (with Bif IR Res Own	700 90 90 90 90 90 90 90 90 90 90 90 90 9			2.25 (1986) 2.25 (
Equ 13-23 Design Ouer barwing Morners (Ms), Mar- Ma - Van 's no')	1790 1790	100 100	100 100	100 100
Con13-30 Con13-31 Coveranting Balign By Montested on Leadersh al Connective Proper the Forective, A foundation Forective, A foundation Forective, A foundation	100 100	1 7 7 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 100	17.00 10.0
he he conventive Conventive Design (A) Np	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
weturning Corrosal weturning Corrosal du sio Corrosalive Boreal contropalive Walfr (Wc) to tuseral lateral lat	1556 279079 259	100,000 100,	March Marc	100 100
Table Control Oversion impulsive More Design Lateral (Al) NP Found (Al	(1.97) (1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1
olimide Editrade Ecyclis Weight of Weight of Prepl Une Shell the Floor Deep (We), Life (W), Ed (Accele	100 100	1 1000 100	100 100	10 10 10 10 10 10 10 10
Weight of the Roof (We), Bif	1 100.77 1 100.77 1 100.77 1 100.77 1 1 1 100.77 1 1 1 1 1 1 1 1 1	1 100 100 100 100 100 100 100 100 100 1	1 10 10 10 10 10 10 10	1
13-25/26 Con-13-28/29 Hamper Control of the Weight Force due to house with foot to the Part Control of the Con	100 100	1000 1000	1111 100 101	
13-27 Total Volume ft , Weight, fill Wei in Your'pp W =	411777 (42177 411777 (421777) (421777) (421777) (421777) (421777) (421777) (421777) (421777) (421777) (421777) (421777) (421777) (421777) (421777) (421777) (421777) (421777) (421777) (4217777) (4217777) (4217777) (4217777) (4217777) (4217777) (4217777) (4217777) (4217777) (4217777) (4217777) (4217777) (4217777) (4217777) (4217777) (4217777) (4217777) (42177777) (42177777) (42177777) (42177777) (42177777) (42177777) (42177777) (42177777) (42177777) (42177777) (42177777) (42177777) (42177777) (42177777) (421777777) (421777777) (421777777) (421777777) (421777777) (4217777777) (4217777777) (42177777777) (42177777777) (421777777777) (421777777777) (42177777777777) (421777777777777) (421777777777777777777777777777777777777	1	15087 1508	1900.00 1900
No.221 Nb 10	2.000 0.1778 2.000 0.1879 2.000 0.1879 2.000 1.1879 2.000		2,500 1,50	2 1200 11300 12300
Son by Son 9	8.475 0.131 8.475 0.131 8.476 0.131 8.476 0.131 8.476 0.131 8.476 0.131 8.476 0.131 8.476 0.131 8.476 0.131 8.477	1	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(6.77) (6
for 13-91, for 9 Str from AEE 7-10	7 7 1 1500 8 1 1500 1 1500	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.17 1.	2 1 1500 H 1500
Group II. Salar Share Sell, per series sheet ATC Fort Shows or Selenic sheet ATC Fort Selenic Macord she Selenic Selenic Macord Selenic Macord Selenic Macord Selenic Selenic Selenic Selenic Selenic Selenic Selenic Sele	11. 0.0977 12. 0.		1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1
Table 28 Section 13.2.1 Section 13.2.1 W provide do et al. 13.1 acchool section of acchool section of acchool section of fortifier to post fortige for the fortige fortige for the fortige fortige for the fortige fortige for the fortige forting for the fortige for the f	25 25 25 25 25 25 25 25 25 25 25 25 25 2			1 1 1 1 1 1 1 1 1 1
freeboar d Assamed to be 3 feet cariess fress ings indicate otherwise				1
Details Bottow of Top of the Fractile Fractile	Unividual Univ	menonini men		Common 12
N	64 1945,378 55 10 1945,378 56 10 1945,178 57 10 1945,178 58 10 1945,178 58 10 1946,178 58 10 194	10 10 10 10 10 10 10 10	00 13 204,000 00 19 19 204,000 00 19 19 204,000 00 19 19 204,000 00 19 19 204,000 00 19 19 204,000 00 19 19 204,000 00 19 19 204,000 00 19 19 204,000 00 19 19 204,000 00 19 19 204,000 00 19 19 204,000 00 19 19 204,000 00 19 19 204,000 00 19 19 204,000 00 19 19 204,000 00 19 19 204,000 00 19 19 204,000 00 19 19 204,000 00 1	104 2.547, MRS 104 2.547, MRS 104 2.547, MRS 105 2.547, MRS 2.547, M
	\$100,000 TO \$100,0		A A A A A A A A	2000 118.0001 108.0001 118.0001 108.0001 118.0001 108.0001 108.0001 108.0001 108.0001 108.0001 108.0001 108.0001 108.0001 108.0001 118.0001 108.0001 118.0001 108.0001 118.0001 108.0001 118.0001 108.0001 118.0001 108.0001 118.0001 108.0001 118.0001 108.0001 118.0001 108.0001 118.0001 108.0001 118.0001 108.0001 118.0001 118.0001 108.0001 118.0001 108.0001 118.0001 108.0001 118.0001 118.0001 108.0001 118.000
1 3		definition of the state of the	The control of the co	The control of the co
Address	STEED DOOR place when the ATTENDED CONTROL STEED CONTROL S	In the control to the	Comment of the commen	A fine of the control
Tank Site Zone	WITHOUT IN WHAT IN WITHOUT IN WIT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	NAME		1 00000 1 000000 1 000000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00000 1 00	C

[This page intentionally left blank.]

Search Information

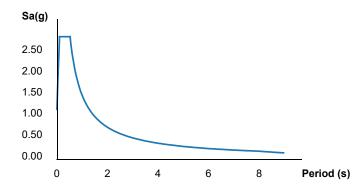
Address: 17705 Heorn Lane

Coordinates: 34.39692, -118.4451

Elevation: 1752 ft

Timestamp: 2021-03-05T04:52:01.694Z

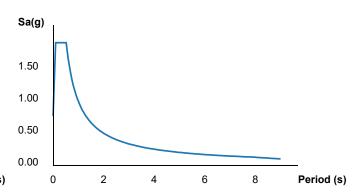
Hazard Type: Seismic


Reference Document:

ASCE7-10

Risk Category: III
Site Class: D

Basic Parameters


MCER Horizontal Response Spectrum

Imager / ©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Name	Value	Description
S _S	2.884	MCE _R ground motion (period=0.2s)

S _S	2.884	MCE _R ground motion (period=0.2s)
S ₁	1.004	MCE _R ground motion (period=1.0s)
S _{MS}	2.884	Site-modified spectral acceleration value
S _{M1}	1.507	Site-modified spectral acceleration value
S _{DS}	1.923	Numeric seismic design value at 0.2s SA
S _{D1}	1.004	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _v	1.5	Site amplification factor at 1.0s
CRS	0.947	Coefficient of risk (0.2s)

1 of 2 3/4/2021, 9:5**2**♥M

CR ₁	0.965	Coefficient of risk (1.0s)
PGA	1.065	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.065	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.884	Probabilistic risk-targeted ground motion (0.2s)
SsUH	3.047	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.023	Factored deterministic acceleration value (0.2s)
S1RT	1.004	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.041	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.218	Factored deterministic acceleration value (1.0s)
PGAd	1.175	Factored deterministic acceleration value (PGA)

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 3/9/2 3/4/2021, 9:52 PM

ATC Hazards by Location

Search Information

Address: 18623 Cedar Valey Way

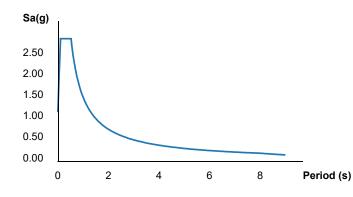
Coordinates: 34.40154, -118.45923

Elevation: 1668 ft

Timestamp: 2021-03-05T04:45:26.113Z

Hazard Type: Seismic Reference

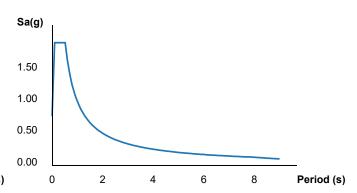
Document:


Site Class:

ASCE7-10

D

Risk Category: Ш


MCER Horizontal Response Spectrum

Imager ©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.907	MCE _R ground motion (period=0.2s)
S ₁	1.012	MCE _R ground motion (period=1.0s)
S _{MS}	2.907	Site-modified spectral acceleration value
S _{M1}	1.517	Site-modified spectral acceleration value
S _{DS}	1.938	Numeric seismic design value at 0.2s SA
S _{D1}	1.012	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CR _S	0.947	Coefficient of risk (0.2s)

3/4/2021, 9:45 PM 1 of 2

CR ₁	0.965	Coefficient of risk (1.0s)
PGA	1.073	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.073	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.907	Probabilistic risk-targeted ground motion (0.2s)
SsUH	3.071	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.017	Factored deterministic acceleration value (0.2s)
S1RT	1.012	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.048	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.224	Factored deterministic acceleration value (1.0s)
PGAd	1.175	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 3/4/2021, 9:45 PM

Address: N Pine St, Orange, CA, USA

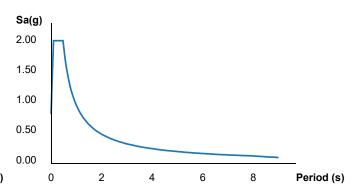
Coordinates: 34.36479, -118.53706

Elevation: 1552 ft

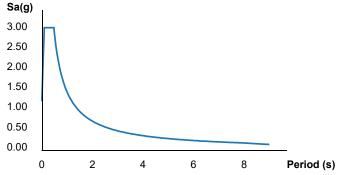
Timestamp: 2021-03-05T03:59:58.630Z

Hazard Type: Seismic

Reference **Document:** ASCE7-10


Risk Category:

Ш


Site Class: D

MCER Horizontal Response Spectrum Design Horizontal Response Spectrum

quity Home Loans

wan data @2021 Imagery @2021 , Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Basic Parameters

Name	Value	Description
S _S	3.055	MCE _R ground motion (period=0.2s)
S ₁	0.966	MCE _R ground motion (period=1.0s)
S _{MS}	3.055	Site-modified spectral acceleration value
S _{M1}	1.449	Site-modified spectral acceleration value
S _{DS}	2.037	Numeric seismic design value at 0.2s SA
S _{D1}	0.966	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _v	1.5	Site amplification factor at 1.0s
CRS	0.925	Coefficient of risk (0.2s)

3/4/2021, 9:00 **1**⁴M 1 of 2

CR ₁	0.947	Coefficient of risk (1.0s)
PGA	1.147	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.147	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	3.17	Probabilistic risk-targeted ground motion (0.2s)
SsUH	3.426	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.055	Factored deterministic acceleration value (0.2s)
S1RT	1.099	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.161	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.966	Factored deterministic acceleration value (1.0s)
PGAd	1.147	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 3f2 3/4/2021, 9:00 PM

Address: N Pine St, Orange, CA, USA

Coordinates: 34.35243, -118.5387

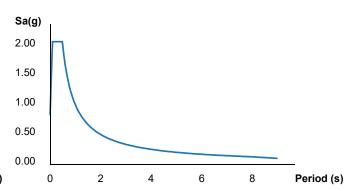
Elevation: 1634 ft

Timestamp: 2021-03-05T04:04:18.366Z

Hazard Type: Seismic Reference ASCE7-10

Document:

Risk Category: Ш Site Class: D


1634 ft Crescent Valle

wan data ©2021 Imagery ©2021 , Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

MCER Horizontal Response Spectrum

Sa(g) 3.00 2.50 2.00 1.50 1.00 0.50 0.00 0 2 6 8 Period (s)

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	3.126	MCE _R ground motion (period=0.2s)
S ₁	1.012	MCE _R ground motion (period=1.0s)
S _{MS}	3.126	Site-modified spectral acceleration value
S _{M1}	1.519	Site-modified spectral acceleration value
S _{DS}	2.084	Numeric seismic design value at 0.2s SA
S _{D1}	1.012	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CR _S	0.919	Coefficient of risk (0.2s)

3/4/2021, 9:041 M 1 of 2

CR ₁	0.941	Coefficient of risk (1.0s)
PGA	1.187	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.187	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	3.229	Probabilistic risk-targeted ground motion (0.2s)
SsUH	3.513	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.126	Factored deterministic acceleration value (0.2s)
S1RT	1.122	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.192	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.012	Factored deterministic acceleration value (1.0s)
PGAd	1.187	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 5 1 2 3/4/2021, 9:04 PM

Address: N Pine St, Orange, CA, USA

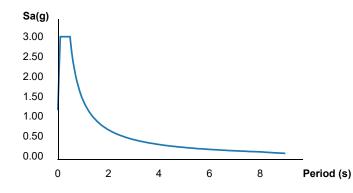
Coordinates: 34.36752, -118.52048

Elevation: 1460 ft

Timestamp: 2021-03-05T03:55:58.049Z

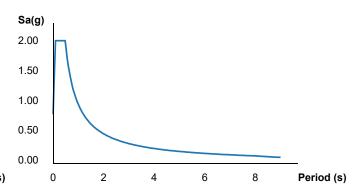
Hazard Type: Seismic Reference

Document:


Site Class:

ASCE7-10

D


Risk Category: Ш

MCER Horizontal Response Spectrum

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	3.086	MCE _R ground motion (period=0.2s)
S ₁	0.988	MCE _R ground motion (period=1.0s)
S _{MS}	3.086	Site-modified spectral acceleration value
S _{M1}	1.481	Site-modified spectral acceleration value
S _{DS}	2.057	Numeric seismic design value at 0.2s SA
S _{D1}	0.988	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _v	1.5	Site amplification factor at 1.0s
CRS	0.926	Coefficient of risk (0.2s)

3/4/2021, 8:5**6**15M 1 of 2

CR ₁	0.946	Coefficient of risk (1.0s)
PGA	1.166	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.166	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	3.174	Probabilistic risk-targeted ground motion (0.2s)
SsUH	3.426	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.086	Factored deterministic acceleration value (0.2s)
S1RT	1.108	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.171	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.988	Factored deterministic acceleration value (1.0s)
PGAd	1.166	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

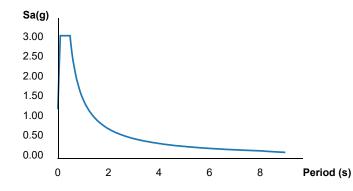
2 3f² 3/4/2021, 8:56 PM

Address: N Pine St, Orange, CA, USA

Coordinates: 34.35801, -118.54226

Elevation: 1713 ft

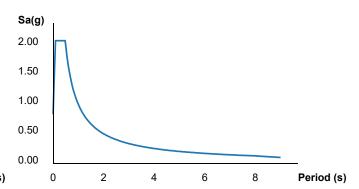
Timestamp: 2021-03-05T04:02:39.962Z


Hazard Type: Seismic

Reference Document:

ASCE7-10

Risk Category: III
Site Class: D


MCER Horizontal Response Spectrum

wan data ©2021 Imagery ©2021 , Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	3.106	MCE _R ground motion (period=0.2s)
S ₁	0.995	MCE _R ground motion (period=1.0s)
S _{MS}	3.106	Site-modified spectral acceleration value
S _{M1}	1.492	Site-modified spectral acceleration value
S _{DS}	2.071	Numeric seismic design value at 0.2s SA
S _{D1}	0.995	Numeric seismic design value at 1.0s SA

▼Additional Information

Value	Description
E	Seismic design category
1	Site amplification factor at 0.2s
1.5	Site amplification factor at 1.0s
0.922	Coefficient of risk (0.2s)
	E 1 1.5

1 of 2 3/4/2021, 9:0**3 17**M

CR ₁	0.944	Coefficient of risk (1.0s)
PGA	1.174	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.174	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	3.198	Probabilistic risk-targeted ground motion (0.2s)
SsUH	3.469	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.106	Factored deterministic acceleration value (0.2s)
S1RT	1.108	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.173	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.995	Factored deterministic acceleration value (1.0s)
PGAd	1.174	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 3f9 3/4/2021, 9:03 PM

Address: N Pine St, Orange, CA, USA

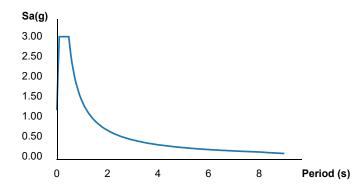
Coordinates: 34.36908, -118.54735

Elevation: 1555 ft

Timestamp: 2021-03-05T04:01:23.610Z

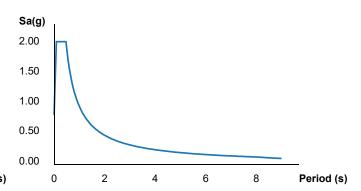
Hazard Type: Seismic Reference

Document:


Site Class:

ASCE7-10

D


Risk Category: Ш

MCER Horizontal Response Spectrum

wan data ©2021 Imagery ©2021 , Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	3.065	MCE _R ground motion (period=0.2s)
S ₁	0.965	MCE _R ground motion (period=1.0s)
S _{MS}	3.065	Site-modified spectral acceleration value
S _{M1}	1.447	Site-modified spectral acceleration value
S _{DS}	2.043	Numeric seismic design value at 0.2s SA
S _{D1}	0.965	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CR _S	0.928	Coefficient of risk (0.2s)

3/4/2021, 9:0**119**M 1 of 2

CR ₁	0.951	Coefficient of risk (1.0s)
PGA	1.148	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.148	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	3.138	Probabilistic risk-targeted ground motion (0.2s)
SsUH	3.383	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.065	Factored deterministic acceleration value (0.2s)
S1RT	1.082	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.138	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.965	Factored deterministic acceleration value (1.0s)
PGAd	1.148	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

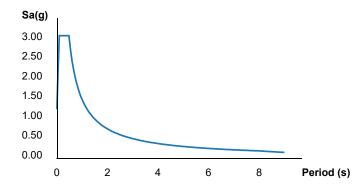
2 3/4/2021, 9:01 PM

Address: 25101 Sagecrest Cir

Coordinates: 34.37405, -118.57363

Elevation: 1693 ft

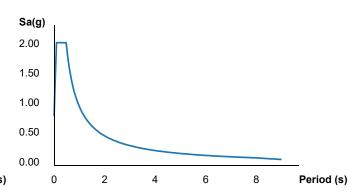
Timestamp: 2021-03-05T05:21:48.982Z


Hazard Type: Seismic

Reference Document:

ASCE7-10

Risk Category: III
Site Class: D


MCER Horizontal Response Spectrum

Imagery ©2021 , Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	3.105	MCE _R ground motion (period=0.2s)
S ₁	0.991	MCE _R ground motion (period=1.0s)
S _{MS}	3.105	Site-modified spectral acceleration value
S _{M1}	1.487	Site-modified spectral acceleration value
S _{DS}	2.07	Numeric seismic design value at 0.2s SA
S _{D1}	0.991	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CR _S	0.929	Coefficient of risk (0.2s)

1 of 2 3/4/2021, 10:2**2**4M

CR ₁	0.951	Coefficient of risk (1.0s)
PGA	1.172	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.172	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	3.153	Probabilistic risk-targeted ground motion (0.2s)
SsUH	3.395	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.105	Factored deterministic acceleration value (0.2s)
S1RT	1.089	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.145	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.991	Factored deterministic acceleration value (1.0s)
PGAd	1.172	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 3/2 3/4/2021, 10:22 PM

Address: 25112 Rye Canyon Loop

Coordinates: 34.45933, -118.58156

Elevation: 1402 ft

Timestamp: 2021-03-05T05:01:58.635Z

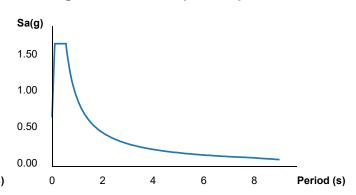
Hazard Type: Seismic

Reference Document:

ASCE7-10

Risk Category:

Site Class: D


1402 ft Imagery ©2021 CNES / Airbus Mayar Technologies II S. Geological Survey

Imager / ©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

MCER Horizontal Response Spectrum

Sa(g) 2.50 2.00 1.50 1.00 0.50 0.00 0 2 4 6 8 Period (s)

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.53	MCE _R ground motion (period=0.2s)
S ₁	0.924	MCE _R ground motion (period=1.0s)
S _{MS}	2.53	Site-modified spectral acceleration value
S _{M1}	1.386	Site-modified spectral acceleration value
S _{DS}	1.686	Numeric seismic design value at 0.2s SA
S _{D1}	0.924	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CR _S	0.998	Coefficient of risk (0.2s)

1 of 2 3/4/2021, 10:0**2**4**2**M

CR ₁	0.997	Coefficient of risk (1.0s)
PGA	0.887	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.887	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.53	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.536	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.96	Factored deterministic acceleration value (0.2s)
S1RT	0.924	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.926	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.261	Factored deterministic acceleration value (1.0s)
PGAd	1.151	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 3/4/2021, 10:02 PM

ATC Hazards by Location

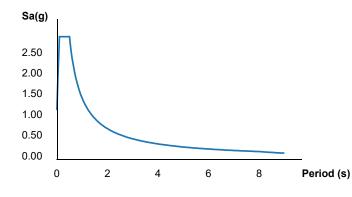
Search Information

Address: 25198 Karie Lane

Coordinates: 34.39044, -118.51254

Elevation: 1452 ft

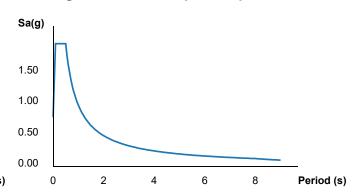
Timestamp: 2021-03-05T04:53:29.726Z


Hazard Type: Seismic

Reference Document:

ASCE7-10

Risk Category: III
Site Class: D


MCER Horizontal Response Spectrum

Imagery ©2021 , Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.961	MCE _R ground motion (period=0.2s)
S ₁	0.985	MCE _R ground motion (period=1.0s)
S _{MS}	2.961	Site-modified spectral acceleration value
S _{M1}	1.477	Site-modified spectral acceleration value
S _{DS}	1.974	Numeric seismic design value at 0.2s SA
S _{D1}	0.985	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F_{V}	1.5	Site amplification factor at 1.0s
CRS	0.935	Coefficient of risk (0.2s)

1 of 2

CR ₁	0.956	Coefficient of risk (1.0s)
PGA	1.094	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.094	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	3.069	Probabilistic risk-targeted ground motion (0.2s)
SsUH	3.281	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.961	Factored deterministic acceleration value (0.2s)
S1RT	1.065	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.114	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.985	Factored deterministic acceleration value (1.0s)
PGAd	1.094	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 3/4/2021, 9:53 PM

Address: 25774 Oak Meadow Drive

Coordinates: 34.3976, -118.58555

Elevation: 1531 ft

Timestamp: 2021-03-05T05:13:50.309Z

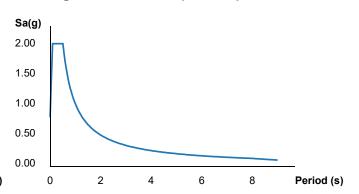
Hazard Type: Seismic

Reference Document:

ASCE7-10

Risk Category:

Site Class: D


1531 ft

Imager / ©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

MCER Horizontal Response Spectrum

Sa(g) 3.00 2.50 2.00 1.50 1.00 0.50 0.00 0 2 4 6 8 Period (s)

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	3.07	MCE _R ground motion (period=0.2s)
S ₁	1.043	MCE _R ground motion (period=1.0s)
S _{MS}	3.07	Site-modified spectral acceleration value
S _{M1}	1.564	Site-modified spectral acceleration value
S _{DS}	2.046	Numeric seismic design value at 0.2s SA
S _{D1}	1.043	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _v	1.5	Site amplification factor at 1.0s
CRS	0.939	Coefficient of risk (0.2s)

1 of 2 3/4/2021, 10:1447M

CR ₁	0.964	Coefficient of risk (1.0s)
PGA	1.149	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.149	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	3.089	Probabilistic risk-targeted ground motion (0.2s)
SsUH	3.291	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.07	Factored deterministic acceleration value (0.2s)
S1RT	1.055	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.094	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.043	Factored deterministic acceleration value (1.0s)
PGAd	1.187	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 3/9 3/4/2021, 10:14 PM

ATC Hazards by Location

Search Information

Coordinates: 34.389446676720965, -118.56244267672118

Elevation: 1276 ft

Timestamp: 2021-03-05T05:04:00.419Z

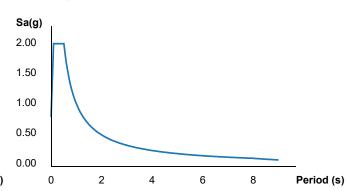
Hazard Type: Seismic

Reference ASCE7-10

Document:

Risk Category:

Site Class: D


1276 ft

Imager: ©2021, CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

MCER Horizontal Response Spectrum

Sa(g) 3.00 2.50 2.00 1.50 1.00 0.50 0.00 0 2 4 6 8 Period (s)

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	3.062	MCE _R ground motion (period=0.2s)
S ₁	1.04	MCE _R ground motion (period=1.0s)
S _{MS}	3.062	Site-modified spectral acceleration value
S _{M1}	1.561	Site-modified spectral acceleration value
S _{DS}	2.041	Numeric seismic design value at 0.2s SA
S _{D1}	1.04	Numeric seismic design value at 1.0s SA

▼Additional Information

Value	Description
E	Seismic design category
1	Site amplification factor at 0.2s
1.5	Site amplification factor at 1.0s
0.937	Coefficient of risk (0.2s)
0.961	Coefficient of risk (1.0s)
	E 1 1.5 0.937

1 of 2 3/4/2021, 10:04**49**M

PGA	1.146	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.146	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	3.062	Probabilistic risk-targeted ground motion (0.2s)
SsUH	3.267	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.071	Factored deterministic acceleration value (0.2s)
S1RT	1.051	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.094	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.04	Factored deterministic acceleration value (1.0s)
PGAd	1.187	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Address: 26024 Kavenaugh Lane

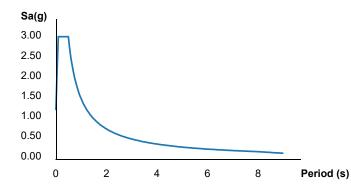
Coordinates: 34.39184, -118.59197

Elevation: 1694 ft

Timestamp: 2021-03-05T05:20:23.018Z

D

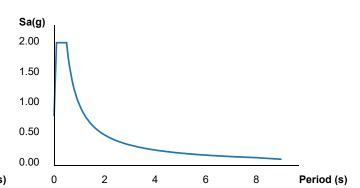
Hazard Type: Seismic


Reference Document:

Site Class:

ASCE7-10

Risk Category:


MCER Horizontal Response Spectrum

Imager © 2021, CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	3.047	MCE _R ground motion (period=0.2s)
S ₁	1.004	MCE _R ground motion (period=1.0s)
S _{MS}	3.047	Site-modified spectral acceleration value
S _{M1}	1.506	Site-modified spectral acceleration value
S _{DS}	2.031	Numeric seismic design value at 0.2s SA
S _{D1}	1.004	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _v	1.5	Site amplification factor at 1.0s
CR _S	0.935	Coefficient of risk (0.2s)

1 of 2 3/4/2021, 10:2**0 4**M

CR ₁	0.96	Coefficient of risk (1.0s)
PGA	1.169	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.169	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	3.127	Probabilistic risk-targeted ground motion (0.2s)
SsUH	3.343	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.047	Factored deterministic acceleration value (0.2s)
S1RT	1.071	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.115	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.004	Factored deterministic acceleration value (1.0s)
PGAd	1.172	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

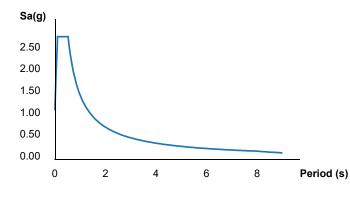
2 3 2 2 3 2 2

Address: 26833 Cherry Willow Dr

Coordinates: 34.401, -118.435

Elevation: 1822 ft

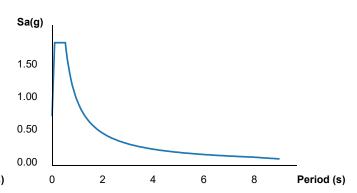
Timestamp: 2021-03-05T04:50:28.656Z


Hazard Type: Seismic

Reference Document:

ASCE7-10

Risk Category: III
Site Class: D


MCER Horizontal Response Spectrum

Imager / ©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.816	MCE _R ground motion (period=0.2s)
S ₁	0.983	MCE _R ground motion (period=1.0s)
S _{MS}	2.816	Site-modified spectral acceleration value
S _{M1}	1.475	Site-modified spectral acceleration value
S _{DS}	1.877	Numeric seismic design value at 0.2s SA
S _{D1}	0.983	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _v	1.5	Site amplification factor at 1.0s
CR _S	0.95	Coefficient of risk (0.2s)

1 of 2

CR ₁	0.969	Coefficient of risk (1.0s)
PGA	1.037	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.037	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.816	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.965	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.013	Factored deterministic acceleration value (0.2s)
S1RT	0.983	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.015	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.18	Factored deterministic acceleration value (1.0s)
PGAd	1.171	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 **3?**4/2021, 9:50 PM

Address: 26975 Westridge Pkwy Valencia

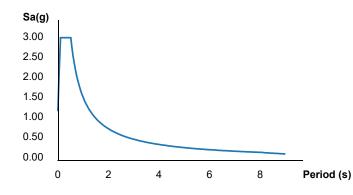
Coordinates: 34.40646, -118.59633

Elevation: 1403 ft

Timestamp: 2021-03-05T04:59:29.113Z

D

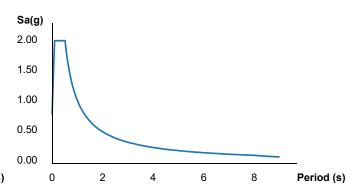
Hazard Type: Seismic


Reference Document:

Site Class:

ASCE7-10

Risk Category:


MCER Horizontal Response Spectrum

Imager v ©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	3.053	MCE _R ground motion (period=0.2s)
S ₁	1.045	MCE _R ground motion (period=1.0s)
S _{MS}	3.053	Site-modified spectral acceleration value
S _{M1}	1.567	Site-modified spectral acceleration value
S _{DS}	2.035	Numeric seismic design value at 0.2s SA
S _{D1}	1.045	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CR _S	0.945	Coefficient of risk (0.2s)

1 of 2

CR ₁	0.968	Coefficient of risk (1.0s)
PGA	1.125	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.125	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	3.053	Probabilistic risk-targeted ground motion (0.2s)
SsUH	3.23	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.078	Factored deterministic acceleration value (0.2s)
S1RT	1.045	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.079	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.069	Factored deterministic acceleration value (1.0s)
PGAd	1.193	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 3 4 2021, 9:59 PM

Address: 28400 Copper Hill Saugus

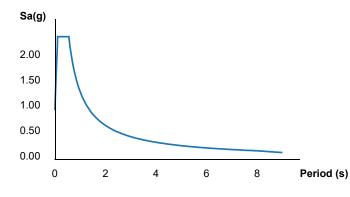
Coordinates: 34.46276, -118.54011

Elevation: 1508 ft

Timestamp: 2021-03-05T05:09:59.697Z

Hazard Type: Seismic

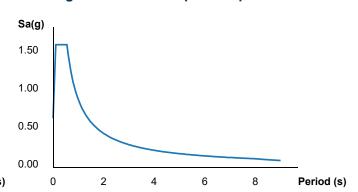
Reference Document:


Site Class:

ASCE7-10

D

Risk Category:


MCER Horizontal Response Spectrum

lmager / ©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.423	MCE _R ground motion (period=0.2s)
S ₁	0.892	MCE _R ground motion (period=1.0s)
S _{MS}	2.423	Site-modified spectral acceleration value
S _{M1}	1.338	Site-modified spectral acceleration value
S _{DS}	1.615	Numeric seismic design value at 0.2s SA
S _{D1}	0.892	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CR _S	1.002	Coefficient of risk (0.2s)

1 of 2 3/4/2021, 10:1**0₹**M

CR ₁	1.004	Coefficient of risk (1.0s)
PGA	0.855	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.855	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.423	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.419	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.005	Factored deterministic acceleration value (0.2s)
S1RT	0.892	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.888	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.15	Factored deterministic acceleration value (1.0s)
PGAd	1.166	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Address: 28636 Livingston Ave

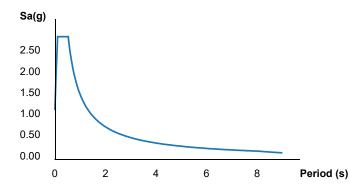
Coordinates: 34.44301, -118.64083

Elevation: 1409 ft

Timestamp: 2021-03-05T05:08:35.378Z

Hazard Type: Seismic

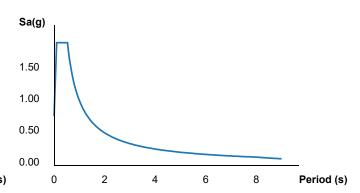
Reference Document:


Site Class:

ASCE7-10

D

Risk Category:


MCER Horizontal Response Spectrum

Imager v ©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.899	MCE _R ground motion (period=0.2s)
S ₁	1.022	MCE _R ground motion (period=1.0s)
S _{MS}	2.899	Site-modified spectral acceleration value
S _{M1}	1.533	Site-modified spectral acceleration value
S _{DS}	1.933	Numeric seismic design value at 0.2s SA
S _{D1}	1.022	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	Е	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _v	1.5	Site amplification factor at 1.0s
CR _S	0.975	Coefficient of risk (0.2s)

CR ₁	0.987	Coefficient of risk (1.0s)
PGA	1.031	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.031	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.899	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.973	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.017	Factored deterministic acceleration value (0.2s)
S1RT	1.022	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.035	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.141	Factored deterministic acceleration value (1.0s)
PGAd	1.17	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 **34**2221, 10:08 PM

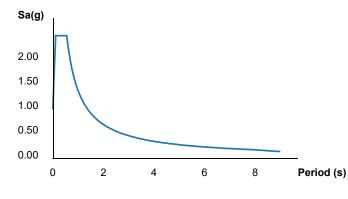
Address: 28820 Bellows CT

Coordinates: 34.46251, -118.57125

Elevation: 1523 ft

Timestamp: 2021-03-05T05:11:45.366Z

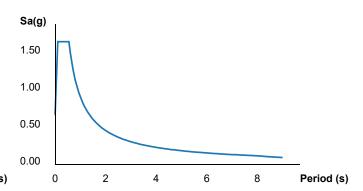
Hazard Type: Seismic


Reference Document:

ASCE7-10

Risk Category:

Site Class: D


MCER Horizontal Response Spectrum

1523 ft

Imager (©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.485	MCE _R ground motion (period=0.2s)
S ₁	0.912	MCE _R ground motion (period=1.0s)
S _{MS}	2.485	Site-modified spectral acceleration value
S _{M1}	1.368	Site-modified spectral acceleration value
S _{DS}	1.657	Numeric seismic design value at 0.2s SA
S _{D1}	0.912	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CRS	1	Coefficient of risk (0.2s)

1 of 2 3/4/2021, 10:1**141**M

CR ₁	1	Coefficient of risk (1.0s)
PGA	0.873	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.873	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.485	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.484	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.013	Factored deterministic acceleration value (0.2s)
S1RT	0.912	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.912	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.251	Factored deterministic acceleration value (1.0s)
PGAd	1.174	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 **34/**2021, 10:11 PM

Address: 28834 Bellows Ct

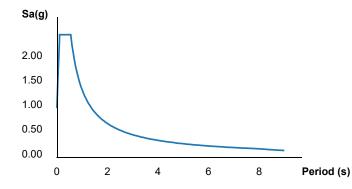
Coordinates: 34.46299, -118.57431

Elevation: 1620 ft

Timestamp: 2021-03-05T05:22:43.199Z

Hazard Type: Seismic

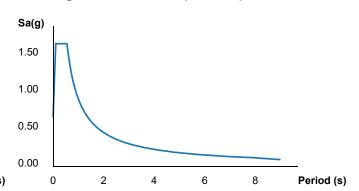
Reference Document:


Site Class:

ASCE7-10

D

Risk Category:


MCER Horizontal Response Spectrum

1620 ft

Imagery ©2021 , Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.489	MCE _R ground motion (period=0.2s)
S ₁	0.913	MCE _R ground motion (period=1.0s)
S _{MS}	2.489	Site-modified spectral acceleration value
S _{M1}	1.37	Site-modified spectral acceleration value
S _{DS}	1.66	Numeric seismic design value at 0.2s SA
S _{D1}	0.913	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _v	1.5	Site amplification factor at 1.0s
CRS	1.001	Coefficient of risk (0.2s)

1 of 2 3/4/2021, 10:2**3**49M

CR ₁	1	Coefficient of risk (1.0s)
PGA	0.874	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.874	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.489	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.488	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.01	Factored deterministic acceleration value (0.2s)
S1RT	0.913	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.913	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.257	Factored deterministic acceleration value (1.0s)
PGAd	1.172	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 **3**/4/2021, 10:23 PM

Address: 209238 Black Pine Way

Coordinates: 34.48081, -118.53213

Elevation: 1685 ft

Timestamp: 2021-03-05T05:18:49.049Z

Hazard Type: Seismic

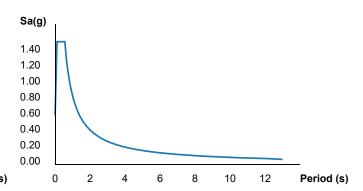
Reference Document:

Site Class:

ASCE7-10

D

Risk Category:


MCER Horizontal Response Spectrum

Sa(g) 2.00 1.50 1.00 0.50 0.00 0 2 4 6 8 10 12 Period (s)

Imagery ©2021 , Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.299	MCE _R ground motion (period=0.2s)
S ₁	0.857	MCE _R ground motion (period=1.0s)
S _{MS}	2.299	Site-modified spectral acceleration value
S _{M1}	1.285	Site-modified spectral acceleration value
S _{DS}	1.533	Numeric seismic design value at 0.2s SA
S _{D1}	0.857	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CRS	1.019	Coefficient of risk (0.2s)

1 of 2 3/4/2021, 10:1**945**M

CR ₁	1.016	Coefficient of risk (1.0s)
PGA	0.807	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.807	Site modified peak ground acceleration
TL	12	Long-period transition period (s)
SsRT	2.299	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.256	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.948	Factored deterministic acceleration value (0.2s)
S1RT	0.857	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.843	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.061	Factored deterministic acceleration value (1.0s)
PGAd	1.131	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 **349** 3/4/2021, 10:19 PM

Address: 30016 Hamlet Way, Castaic, CA 91384, USA

Coordinates: 34.46341, -118.62582

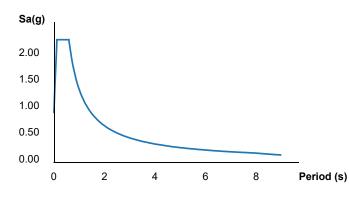
Elevation: 1408 ft

Timestamp: 2021-03-05T05:07:32.495Z

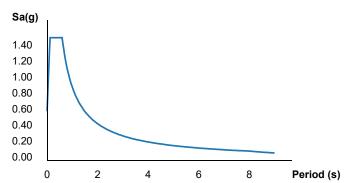
Hazard Type: Seismic

Reference ASCE7-10

Document:


AOOL7-1

Risk Category: III
Site Class: D


1408 ft

Imager (©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

MCER Horizontal Response Spectrum

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.304	MCE _R ground motion (period=0.2s)
S ₁	0.915	MCE _R ground motion (period=1.0s)
S _{MS}	2.304	Site-modified spectral acceleration value
S _{M1}	1.373	Site-modified spectral acceleration value
S _{DS}	1.536	Numeric seismic design value at 0.2s SA
S _{D1}	0.915	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _v	1.5	Site amplification factor at 1.0s
CRS	0.996	Coefficient of risk (0.2s)

1 of 2 3/4/2021, 10:0**147**M

CR ₁	0.998	Coefficient of risk (1.0s)
PGA	0.879	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.879	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.649	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.66	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.304	Factored deterministic acceleration value (0.2s)
S1RT	0.958	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.959	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.915	Factored deterministic acceleration value (1.0s)
PGAd	0.879	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

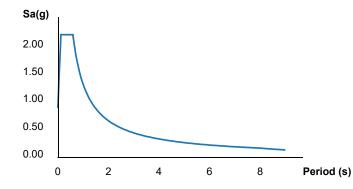
2 **349** 3/4/2021, 10:07 PM

Address: 30400 Vineyard LAne

Coordinates: 34.46812, -118.63578

Elevation: 1630 ft

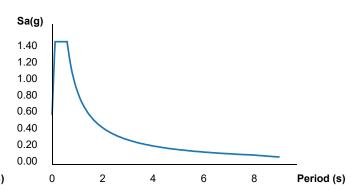
Timestamp: 2021-03-05T05:17:07.165Z


Hazard Type: Seismic

Reference Document:

ASCE7-10

Risk Category: III
Site Class: D


MCER Horizontal Response Spectrum

Imagery ©2021 , Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.228	MCE _R ground motion (period=0.2s)
S ₁	0.885	MCE _R ground motion (period=1.0s)
S _{MS}	2.228	Site-modified spectral acceleration value
S _{M1}	1.327	Site-modified spectral acceleration value
S _{DS}	1.485	Numeric seismic design value at 0.2s SA
S _{D1}	0.885	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CRS	0.999	Coefficient of risk (0.2s)

1 of 2 3/4/2021, 10:1**/49**M

CR ₁	1.001	Coefficient of risk (1.0s)
PGA	0.849	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.849	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.646	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.65	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.228	Factored deterministic acceleration value (0.2s)
S1RT	0.958	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.957	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.885	Factored deterministic acceleration value (1.0s)
PGAd	0.849	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

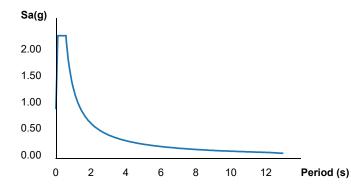
2 379 3/4/2021, 10:17 PM

Address: N Pine St, Orange, CA, USA

Coordinates: 34.51362, -118.63064

Elevation: 1631 ft

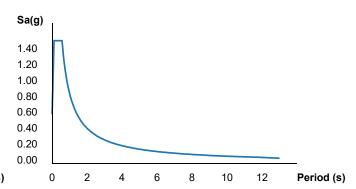
Timestamp: 2021-03-05T04:06:03.046Z


Hazard Type: Seismic Reference

Document:

ASCE7-10

Risk Category: Ш Site Class: D


MCER Horizontal Response Spectrum

wan data ©2021 Imagery ©2021 , Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.314	MCE _R ground motion (period=0.2s)
S ₁	0.881	MCE _R ground motion (period=1.0s)
S _{MS}	2.314	Site-modified spectral acceleration value
S _{M1}	1.321	Site-modified spectral acceleration value
S _{DS}	1.543	Numeric seismic design value at 0.2s SA
S _{D1}	0.881	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CR _S	1.029	Coefficient of risk (0.2s)

3/4/2021, 9:0654M 1 of 2

CR ₁	1.017	Coefficient of risk (1.0s)
PGA	0.805	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.805	Site modified peak ground acceleration
TL	12	Long-period transition period (s)
SsRT	2.314	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.248	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.007	Factored deterministic acceleration value (0.2s)
S1RT	0.881	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.866	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.263	Factored deterministic acceleration value (1.0s)
PGAd	1.171	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

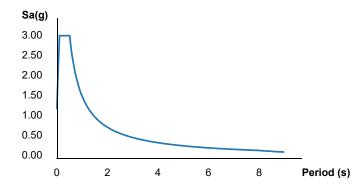
2 3 7/4/2021, 9:06 PM

Address: Access Road at Oakview Estates Drive

Coordinates: 34.3949, -118.58269

Elevation: 1533 ft

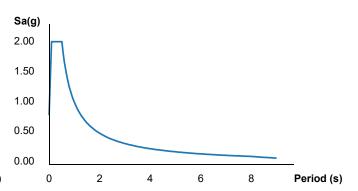
Timestamp: 2021-03-05T05:12:47.247Z


Hazard Type: Seismic

Reference Document:

ASCE7-10

Risk Category: III
Site Class: D


MCER Horizontal Response Spectrum

Imager (©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	3.065	MCE _R ground motion (period=0.2s)
S ₁	1.034	MCE _R ground motion (period=1.0s)
S _{MS}	3.065	Site-modified spectral acceleration value
S _{M1}	1.551	Site-modified spectral acceleration value
S _{DS}	2.043	Numeric seismic design value at 0.2s SA
S _{D1}	1.034	Numeric seismic design value at 1.0s SA

▼Additional Information

SDC E		
ODO L	\$	Seismic design category
F _a 1	;	Site amplification factor at 0.2s
F _V 1.5	.5	Site amplification factor at 1.0s
CR _S 0.9	.938	Coefficient of risk (0.2s)

1 of 2 3/4/2021, 10:13 5 M

CR ₁	0.962	Coefficient of risk (1.0s)
PGA	1.153	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.153	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	3.091	Probabilistic risk-targeted ground motion (0.2s)
SsUH	3.296	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.065	Factored deterministic acceleration value (0.2s)
S1RT	1.057	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.099	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.034	Factored deterministic acceleration value (1.0s)
PGAd	1.184	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 5₱2 3/4/2021, 10:13 PM

ATC Hazards by Location

Search Information

Address: Anza Drive, Valencia, CA

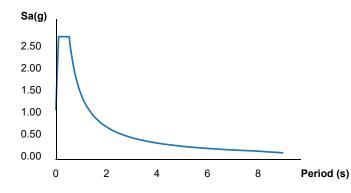
Coordinates: 34.4293, -118.58067

Elevation: 1276 ft

Timestamp: 2021-03-05T04:57:13.901Z

Hazard Type: Seismic

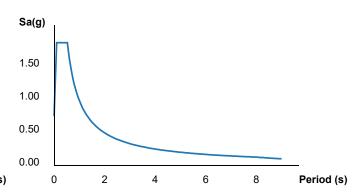
Reference Document:


Site Class:

ASCE7-10

D

Risk Category:


MCER Horizontal Response Spectrum

Imager v ©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.793	MCE _R ground motion (period=0.2s)
S ₁	0.984	MCE _R ground motion (period=1.0s)
S _{MS}	2.793	Site-modified spectral acceleration value
S _{M1}	1.475	Site-modified spectral acceleration value
S _{DS}	1.862	Numeric seismic design value at 0.2s SA
S _{D1}	0.984	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CRS	0.97	Coefficient of risk (0.2s)

1 of 2 3/4/2021, 9:5**/**5**5**M

CR ₁	0.981	Coefficient of risk (1.0s)
PGA	1.003	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.003	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.793	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.88	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.918	Factored deterministic acceleration value (0.2s)
S1RT	0.984	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.002	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.12	Factored deterministic acceleration value (1.0s)
PGAd	1.128	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 3₹9 3/4/2021, 9:57 PM

Address: Appaloosa Rd

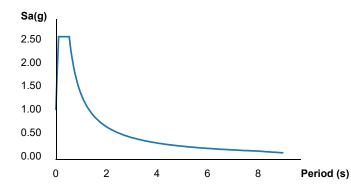
Coordinates: 34.40957, -118.40853

Elevation: 1753 ft

Timestamp: 2021-03-05T04:38:20.109Z

Hazard Type: Seismic

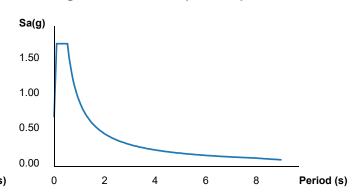
Reference Document:


Site Class:

ASCE7-10

D

Risk Category:


MCER Horizontal Response Spectrum

Imager (©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.62	MCE _R ground motion (period=0.2s)
S ₁	0.926	MCE _R ground motion (period=1.0s)
S _{MS}	2.62	Site-modified spectral acceleration value
S _{M1}	1.389	Site-modified spectral acceleration value
S _{DS}	1.746	Numeric seismic design value at 0.2s SA
S _{D1}	0.926	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CR _S	0.963	Coefficient of risk (0.2s)

1 of 2 3/4/2021, 9:3**8 Y**M

CR ₁	0.982	Coefficient of risk (1.0s)
PGA	0.956	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.956	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.62	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.721	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.968	Factored deterministic acceleration value (0.2s)
S1RT	0.926	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.942	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.086	Factored deterministic acceleration value (1.0s)
PGAd	1.143	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 378 PM

ATC Hazards by Location

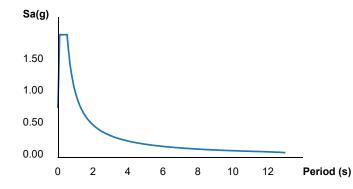
Search Information

Address: N Pine St, Orange, CA, USA

Coordinates: 34.47829, -118.40689

Elevation: 2087 ft

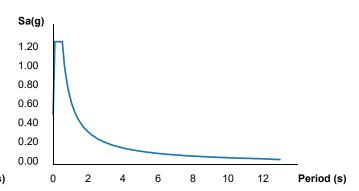
Timestamp: 2021-03-05T04:21:27.552Z


Hazard Type: Seismic

Reference Document:

ASCE7-10

Risk Category: III
Site Class: D


MCER Horizontal Response Spectrum

Map data ©2021 Imagery ©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	1.928	MCE _R ground motion (period=0.2s)
S ₁	0.681	MCE _R ground motion (period=1.0s)
S _{MS}	1.928	Site-modified spectral acceleration value
S _{M1}	1.021	Site-modified spectral acceleration value
S _{DS}	1.286	Numeric seismic design value at 0.2s SA
S _{D1}	0.681	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	D	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CRS	1.037	Coefficient of risk (0.2s)

1 of 2

CR ₁	1.023	Coefficient of risk (1.0s)
PGA	0.718	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.718	Site modified peak ground acceleration
TL	12	Long-period transition period (s)
SsRT	2.118	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.043	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	1.928	Factored deterministic acceleration value (0.2s)
S1RT	0.81	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.792	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.681	Factored deterministic acceleration value (1.0s)
PGAd	0.718	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 **392**

1670 ft

Imager © 2021, CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Search Information

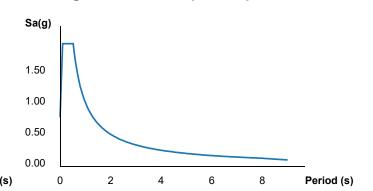
Address: Avenue of The Oaks

Coordinates: 34.40261, -118.48959

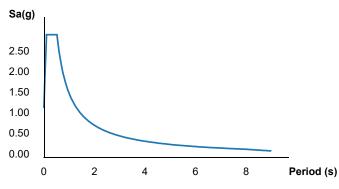
Elevation: 1670 ft

Timestamp: 2021-03-05T04:44:12.292Z

Hazard Type: Seismic


Reference **Document:** ASCE7-10

Risk Category:


Ш

Site Class: D

Design Horizontal Response Spectrum

MCER Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.979	MCE _R ground motion (period=0.2s)
S ₁	1.035	MCE _R ground motion (period=1.0s)
S _{MS}	2.979	Site-modified spectral acceleration value
S _{M1}	1.552	Site-modified spectral acceleration value
S _{DS}	1.986	Numeric seismic design value at 0.2s SA
S _{D1}	1.035	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _v	1.5	Site amplification factor at 1.0s
CRS	0.942	Coefficient of risk (0.2s)

3/4/2021, 9:44⁶⁴M 1 of 2

CR ₁	0.962	Coefficient of risk (1.0s)
PGA	1.105	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.105	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.979	Probabilistic risk-targeted ground motion (0.2s)
SsUH	3.162	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.005	Factored deterministic acceleration value (0.2s)
S1RT	1.035	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.075	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.269	Factored deterministic acceleration value (1.0s)
PGAd	1.169	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 **392** 3/4/2021, 9:44 PM

ATC Hazards by Location

Search Information

Address: N Pine St, Orange, CA, USA

Coordinates: 34.45818, -118.52358

Elevation: 1610 ft

Timestamp: 2021-03-05T04:25:30.403Z

Ш

Hazard Type: Seismic

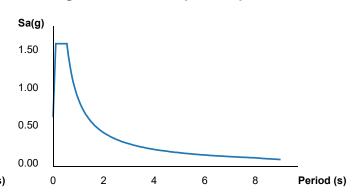
Reference ASCE7-10

Document:

Risk Category:

ocument.

Site Class: D


1610 ft

Imayery ©2021 , Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

MCER Horizontal Response Spectrum

Sa(g) 2.00 1.50 1.00 0.50 0.00 0 2 4 6 8 Period (s)

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.433	MCE _R ground motion (period=0.2s)
S ₁	0.89	MCE _R ground motion (period=1.0s)
S _{MS}	2.433	Site-modified spectral acceleration value
S _{M1}	1.334	Site-modified spectral acceleration value
S _{DS}	1.622	Numeric seismic design value at 0.2s SA
S _{D1}	0.89	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CRS	0.998	Coefficient of risk (0.2s)

1 of 2

CR ₁	1.004	Coefficient of risk (1.0s)
PGA	0.858	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.858	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.433	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.437	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.993	Factored deterministic acceleration value (0.2s)
S1RT	0.89	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.886	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.122	Factored deterministic acceleration value (1.0s)
PGAd	1.157	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

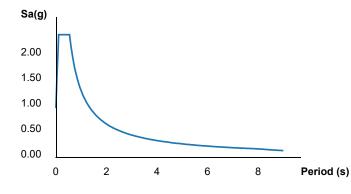
2 3 № 2 3/4/2021, 9:26 PM

Address: Benison Dr

Coordinates: 34.45475, -118.47522

Elevation: 2019 ft

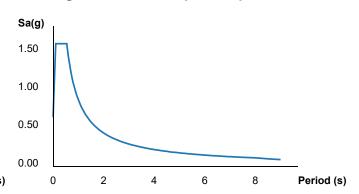
Timestamp: 2021-03-05T04:49:23.613Z


Hazard Type: Seismic

Reference Document:

ASCE7-10

Risk Category: III
Site Class: D


MCER Horizontal Response Spectrum

2019 ft

Imager © 2021, CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.406	MCE _R ground motion (period=0.2s)
S ₁	0.872	MCE _R ground motion (period=1.0s)
S _{MS}	2.406	Site-modified spectral acceleration value
S _{M1}	1.307	Site-modified spectral acceleration value
S _{DS}	1.604	Numeric seismic design value at 0.2s SA
S _{D1}	0.872	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _v	1.5	Site amplification factor at 1.0s
CRS	0.996	Coefficient of risk (0.2s)

1 of 2

CR ₁	1.006	Coefficient of risk (1.0s)
PGA	0.845	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.845	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.406	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.417	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.905	Factored deterministic acceleration value (0.2s)
S1RT	0.872	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.866	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.022	Factored deterministic acceleration value (1.0s)
PGAd	1.107	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 **3 9 9** 3/4/2021, 9:49 PM

ATC Hazards by Location

Search Information

Coordinates: 34.49857558191984, -118.60213

Elevation: 1441 ft

Timestamp: 2021-03-29T18:23:23.628Z

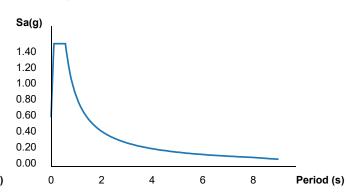
Hazard Type: Seismic

Reference ASCE7-10

Document:

Risk Category:

Site Class: D


wan data @2021 Imagery @2021 , Maxar Technologies, U.S. Geological Survey,

wan data ©2021 Imagery ©2021 , Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

MCER Horizontal Response Spectrum

Sa(g) 2.00 1.50 1.00 0.50 0.00 0 2 4 6 8 Period (s)

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.311	MCE _R ground motion (period=0.2s)
S ₁	0.876	MCE _R ground motion (period=1.0s)
S _{MS}	2.311	Site-modified spectral acceleration value
S _{M1}	1.315	Site-modified spectral acceleration value
S _{DS}	1.541	Numeric seismic design value at 0.2s SA
S _{D1}	0.876	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _v	1.5	Site amplification factor at 1.0s
CRS	1.024	Coefficient of risk (0.2s)
CR ₁	1.014	Coefficient of risk (1.0s)

1 of 2 3/29/2021, 2:2**3**\$\text{\$\text{\$\text{\$T}}\$M}\$

PGA	0.812	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.812	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.311	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.257	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.017	Factored deterministic acceleration value (0.2s)
S1RT	0.876	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.864	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.23	Factored deterministic acceleration value (1.0s)
PGAd	1.176	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

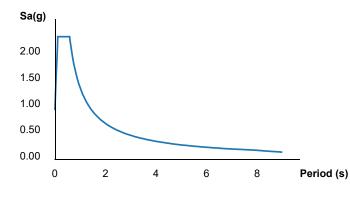
2 **39** 3/29/2021, 2:23 PM

Address: Firebrand

Coordinates: 34.45906, -118.62423

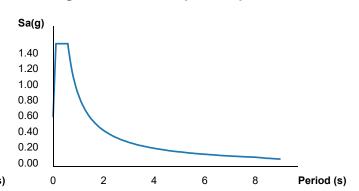
Elevation: 1282 ft

Timestamp: 2021-03-05T04:54:40.174Z


Hazard Type: Seismic Reference

Document:

ASCE7-10


Risk Category: Ш Site Class: D

MCER Horizontal Response Spectrum

Imager / ©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.341	MCE _R ground motion (period=0.2s)
S ₁	0.912	MCE _R ground motion (period=1.0s)
S _{MS}	2.341	Site-modified spectral acceleration value
S _{M1}	1.368	Site-modified spectral acceleration value
S _{DS}	1.561	Numeric seismic design value at 0.2s SA
S _{D1}	0.912	Numeric seismic design value at 1.0s SA

▼Additional Information

Value	Description
E	Seismic design category
1	Site amplification factor at 0.2s
1.5	Site amplification factor at 1.0s
0.993	Coefficient of risk (0.2s)
	E 1 1.5

3/4/2021, 9:5469M 1 of 2

CR ₁	0.996	Coefficient of risk (1.0s)
PGA	0.891	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.891	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.679	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.699	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.341	Factored deterministic acceleration value (0.2s)
S1RT	0.965	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.969	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.912	Factored deterministic acceleration value (1.0s)
PGAd	0.891	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 **3**79 3/4/2021, 9:54 PM

Address: Franklin Pkwy

Coordinates: 34.43023, -118.58067

Elevation: 1230 ft

Timestamp: 2021-03-05T04:58:17.886Z

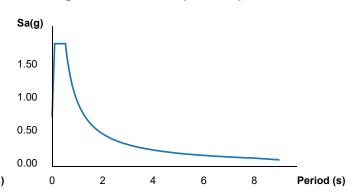
Hazard Type: Seismic

Reference Document:

ASCE7-10

Risk Category:

Site Class: D


1230 ft

Imager (©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

MCER Horizontal Response Spectrum

Sa(g) 2.50 2.00 1.50 1.00 0.50 0.00 0 2 4 6 8 Period (s)

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.784	MCE _R ground motion (period=0.2s)
S ₁	0.981	MCE _R ground motion (period=1.0s)
S _{MS}	2.784	Site-modified spectral acceleration value
S _{M1}	1.472	Site-modified spectral acceleration value
S _{DS}	1.856	Numeric seismic design value at 0.2s SA
S _{D1}	0.981	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F_{V}	1.5	Site amplification factor at 1.0s
CR _S	0.971	Coefficient of risk (0.2s)

1 of 2

CR ₁	0.982	Coefficient of risk (1.0s)
PGA	0.999	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.999	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.784	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.868	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.897	Factored deterministic acceleration value (0.2s)
S1RT	0.981	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.116	Factored deterministic acceleration value (1.0s)
PGAd	1.12	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 374/2021, 9:58 PM

Imagery ©2021 , Maxar Technologies, U.S. Geological Survey, USDA Farm

Service Agency

Search Information

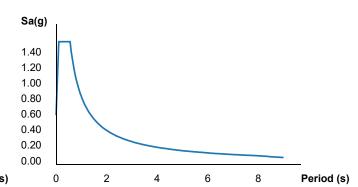
Address: N Pine St, Orange, CA, USA

Coordinates: 34.46892, -118.51875

Elevation: 1827 ft

Timestamp: 2021-03-05T04:26:43.552Z

Hazard Type: Seismic Reference


Document:

ASCE7-10

Risk Category: Ш

Site Class: D

MCER Horizontal Response Spectrum Design Horizontal Response Spectrum

Sa(g) 2.00 1.50 1.00 0.50 0.00 0 2 6 8 Period (s)

Basic Parameters

Name	Value	Description
S _S	2.36	MCE _R ground motion (period=0.2s)
S ₁	0.869	MCE _R ground motion (period=1.0s)
S _{MS}	2.36	Site-modified spectral acceleration value
S _{M1}	1.304	Site-modified spectral acceleration value
S _{DS}	1.573	Numeric seismic design value at 0.2s SA
S _{D1}	0.869	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F_{V}	1.5	Site amplification factor at 1.0s
CR _S	1.009	Coefficient of risk (0.2s)

3/4/2021, 9:2**17** M 1 of 2

CR ₁	1.011	Coefficient of risk (1.0s)
PGA	0.829	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.829	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.36	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.339	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.952	Factored deterministic acceleration value (0.2s)
S1RT	0.869	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.86	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.064	Factored deterministic acceleration value (1.0s)
PGAd	1.133	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 **₹**2 3/4/2021, 9:27 PM

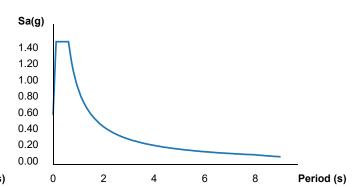
Address: N Pine St, Orange, CA, USA

Coordinates: 34.48329, -118.63962

Elevation: 1722 ft

Timestamp: 2021-03-05T04:13:11.309Z

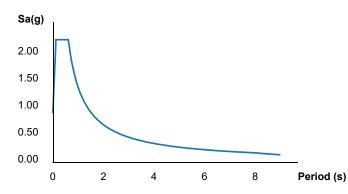
Hazard Type: Seismic Reference


Document:

ASCE7-10

Risk Category: Ш

Site Class: D


Design Horizontal Response Spectrum

wan data ©2021 Imagery ©2021, Maxar Technologies, U.S. Geological Survey,

USDA Farm Service Agency

MCER Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.271	MCE _R ground motion (period=0.2s)
S ₁	0.927	MCE _R ground motion (period=1.0s)
S _{MS}	2.271	Site-modified spectral acceleration value
S _{M1}	1.39	Site-modified spectral acceleration value
S _{DS}	1.514	Numeric seismic design value at 0.2s SA
S _{D1}	0.927	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CR _S	1.012	Coefficient of risk (0.2s)

3/4/2021, 9:1**5**75M 1 of 2

CR ₁	1.01	Coefficient of risk (1.0s)
PGA	0.872	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.872	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.515	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.485	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.271	Factored deterministic acceleration value (0.2s)
S1RT	0.927	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.917	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.948	Factored deterministic acceleration value (1.0s)
PGAd	0.872	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 37⁴/2021, 9:15 PM

Address: Harwick Place

Coordinates: 34.44964, -118.54338

Elevation: 1402 ft

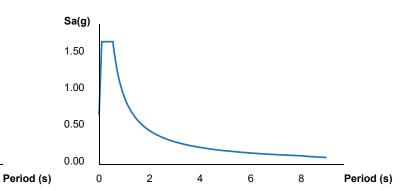
Timestamp: 2021-03-05T05:00:37.308Z

Hazard Type: Seismic

Reference Document:

ASCE7-10

Risk Category:


MCER Horizontal Response Spectrum Sa(g) 2.50 2.00 1.50 1.00 0.50

6

Imager (©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

2

0.00

0

Name	Value	Description
S _S	2.508	MCE _R ground motion (period=0.2s)
S ₁	0.917	MCE _R ground motion (period=1.0s)
S _{MS}	2.508	Site-modified spectral acceleration value
S _{M1}	1.375	Site-modified spectral acceleration value
S _{DS}	1.672	Numeric seismic design value at 0.2s SA
S _{D1}	0.917	Numeric seismic design value at 1.0s SA

8

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _v	1.5	Site amplification factor at 1.0s
CRS	0.99	Coefficient of risk (0.2s)

CR ₁	0.996	Coefficient of risk (1.0s)
PGA	0.889	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.889	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.508	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.534	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.018	Factored deterministic acceleration value (0.2s)
S1RT	0.917	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.92	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.213	Factored deterministic acceleration value (1.0s)
PGAd	1.176	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 37⁹2

ATC Hazards by Location

Search Information

Address: N Pine St, Orange, CA, USA

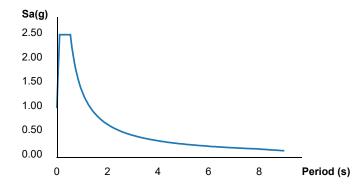
Coordinates: 34.44116, -118.46717

Elevation: 1824 ft

Timestamp: 2021-03-05T04:29:21.407Z

Hazard Type: Seismic Reference

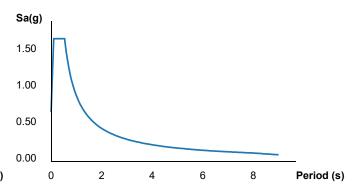
Document:


Site Class:

ASCE7-10

D

Risk Category: Ш


MCER Horizontal Response Spectrum

Imager (©2021, CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.525	MCE _R ground motion (period=0.2s)
S ₁	0.903	MCE _R ground motion (period=1.0s)
S _{MS}	2.525	Site-modified spectral acceleration value
S _{M1}	1.354	Site-modified spectral acceleration value
S _{DS}	1.683	Numeric seismic design value at 0.2s SA
S _{D1}	0.903	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _v	1.5	Site amplification factor at 1.0s
CRS	0.982	Coefficient of risk (0.2s)

3/4/2021, 9:2**9**7**9**M 1 of 2

CR ₁	0.997	Coefficient of risk (1.0s)
PGA	0.896	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.896	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.525	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.572	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.944	Factored deterministic acceleration value (0.2s)
S1RT	0.903	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.906	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.056	Factored deterministic acceleration value (1.0s)
PGAd	1.128	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 **389** 3/4/2021, 9:29 PM

ATC Hazards by Location

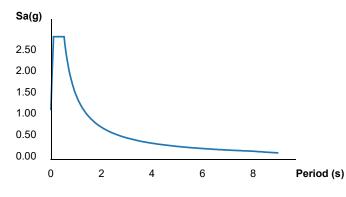
Search Information

Address: 17705 Heron Lane

Coordinates: 34.39691, -118.444505

Elevation: 1770 ft

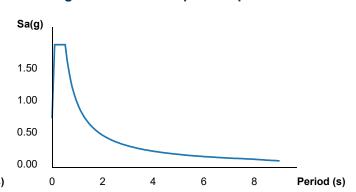
Timestamp: 2021-03-05T04:35:15.866Z


Hazard Type: Seismic Reference

Document:

ASCE7-10

Risk Category: Ш Site Class: D


MCER Horizontal Response Spectrum

Imager (©2021, CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.881	MCE _R ground motion (period=0.2s)
S ₁	1.004	MCE _R ground motion (period=1.0s)
S _{MS}	2.881	Site-modified spectral acceleration value
S _{M1}	1.505	Site-modified spectral acceleration value
S _{DS}	1.921	Numeric seismic design value at 0.2s SA
S _{D1}	1.004	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _v	1.5	Site amplification factor at 1.0s
CR _S	0.947	Coefficient of risk (0.2s)

3/4/2021, 9:35 PM 1 of 2

CR ₁	0.965	Coefficient of risk (1.0s)
PGA	1.064	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.064	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.881	Probabilistic risk-targeted ground motion (0.2s)
SsUH	3.044	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.024	Factored deterministic acceleration value (0.2s)
S1RT	1.004	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.04	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.217	Factored deterministic acceleration value (1.0s)
PGAd	1.175	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 **392**

ATC Hazards by Location

Search Information

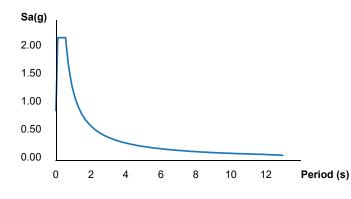
Address: N Pine St, Orange, CA, USA

Coordinates: 34.45456, -118.39626

Elevation: 2103 ft

Timestamp: 2021-03-05T04:18:31.170Z

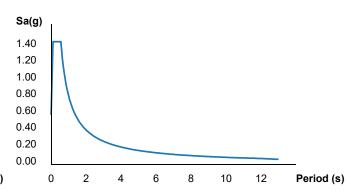
Hazard Type: Seismic


Reference Document:

ASCE7-10

Risk Category:

Site Class: D


MCER Horizontal Response Spectrum

Design Horizontal Response Spectrum

Map data ©2021 Imagery ©2021, CNES / Airbus, Maxar Technologies, U.S.

Geological Survey, USDA Farm Service Agency

Basic Parameters

Name	Value	Description
S _S	2.191	MCE _R ground motion (period=0.2s)
S ₁	0.818	MCE _R ground motion (period=1.0s)
S _{MS}	2.191	Site-modified spectral acceleration value
S _{M1}	1.227	Site-modified spectral acceleration value
S _{DS}	1.461	Numeric seismic design value at 0.2s SA
S _{D1}	0.818	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CRS	1.019	Coefficient of risk (0.2s)

1 of 2

CR ₁	1.022	Coefficient of risk (1.0s)
PGA	0.767	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.767	Site modified peak ground acceleration
TL	12	Long-period transition period (s)
SsRT	2.191	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.151	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.366	Factored deterministic acceleration value (0.2s)
S1RT	0.818	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.801	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.819	Factored deterministic acceleration value (1.0s)
PGAd	0.879	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 5 ₱ 2 3/4/2021, 9:19 PM

1512 ft

Search Information

Address: N Pine St, Orange, CA, USA

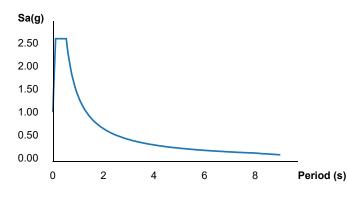
Coordinates: 34.43109, -118.49236

Elevation: 1512 ft

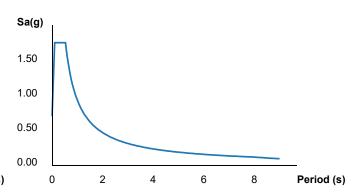
Timestamp: 2021-03-05T04:31:17.511Z

Hazard Type: Seismic Reference

Document:


ASCE7-10

Risk Category: Ш


Site Class: D

Imager / ©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

MCER Horizontal Response Spectrum

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.672	MCE _R ground motion (period=0.2s)
S ₁	0.947	MCE _R ground motion (period=1.0s)
S _{MS}	2.672	Site-modified spectral acceleration value
S _{M1}	1.421	Site-modified spectral acceleration value
S _{DS}	1.781	Numeric seismic design value at 0.2s SA
S _{D1}	0.947	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F_{V}	1.5	Site amplification factor at 1.0s
CR _S	0.971	Coefficient of risk (0.2s)

3/4/2021, 9:3**1**45M 1 of 2

CR ₁	0.986	Coefficient of risk (1.0s)
PGA	0.961	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.961	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.672	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.752	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.01	Factored deterministic acceleration value (0.2s)
S1RT	0.947	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.96	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.163	Factored deterministic acceleration value (1.0s)
PGAd	1.169	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

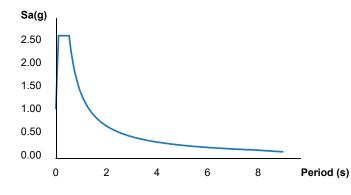
2 **389** 3/4/2021, 9:31 PM

Address: Live Oak Springs Cyn Rd

Coordinates: 34.40035, -118.39916

Elevation: 1949 ft

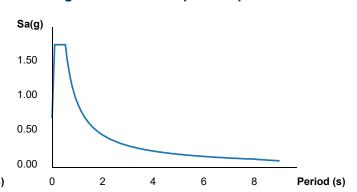
Timestamp: 2021-03-05T04:43:11.961Z


Hazard Type: Seismic Reference

Document:

ASCE7-10

Risk Category: Ш Site Class: D


MCER Horizontal Response Spectrum

Imager (©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.653	MCE _R ground motion (period=0.2s)
S ₁	0.932	MCE _R ground motion (period=1.0s)
S _{MS}	2.653	Site-modified spectral acceleration value
S _{M1}	1.399	Site-modified spectral acceleration value
S _{DS}	1.769	Numeric seismic design value at 0.2s SA
S _{D1}	0.932	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CR _S	0.954	Coefficient of risk (0.2s)

3/4/2021, 9:43⁸⁷M 1 of 2

CR ₁	0.976	Coefficient of risk (1.0s)
PGA	0.977	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.977	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.653	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.782	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.986	Factored deterministic acceleration value (0.2s)
S1RT	0.932	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.955	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.115	Factored deterministic acceleration value (1.0s)
PGAd	1.154	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 3 PD 3/4/2021, 9:43 PM

ATC Hazards by Location

Search Information

Address: N Pine St, Orange, CA, USA

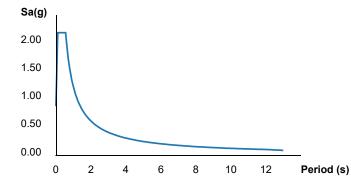
Coordinates: 34.44763, -118.38085

Elevation: 2254 ft

Timestamp: 2021-03-05T04:19:35.515Z

Hazard Type: Seismic Reference

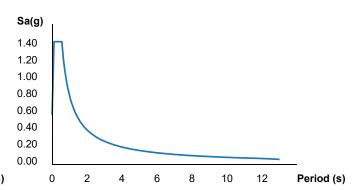
Document:


Site Class:

ASCE7-10

D

Risk Category: Ш


MCER Horizontal Response Spectrum

2254 ft Map data @2021 Imagery @2021, CNES / Airbus, Maxar Technologies, U.S.

Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.184	MCE _R ground motion (period=0.2s)
S ₁	0.815	MCE _R ground motion (period=1.0s)
S _{MS}	2.184	Site-modified spectral acceleration value
S _{M1}	1.222	Site-modified spectral acceleration value
S _{DS}	1.456	Numeric seismic design value at 0.2s SA
S _{D1}	0.815	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _v	1.5	Site amplification factor at 1.0s
CR _S	1.021	Coefficient of risk (0.2s)

3/4/2021, 9:1949M 1 of 2

CR ₁	1.022	Coefficient of risk (1.0s)
PGA	0.763	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.763	Site modified peak ground acceleration
TL	12	Long-period transition period (s)
SsRT	2.184	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.14	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.384	Factored deterministic acceleration value (0.2s)
S1RT	0.815	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.798	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.825	Factored deterministic acceleration value (1.0s)
PGAd	0.885	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 392 3/4/2021, 9:19 PM

Address: N Pine St, Orange, CA, USA

Coordinates: 34.44483, -118.40689

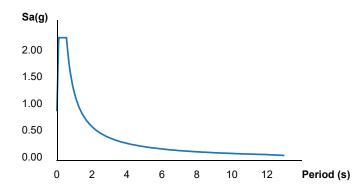
Elevation: 2051 ft

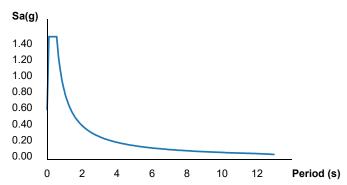
Timestamp: 2021-03-05T04:20:38.580Z

Hazard Type: Seismic

Reference Document:

ASCE7-10


Risk Category:


Site Class: D

MCER Horizontal Response Spectrum

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.297	MCE _R ground motion (period=0.2s)
S ₁	0.842	MCE _R ground motion (period=1.0s)
S _{MS}	2.297	Site-modified spectral acceleration value
S _{M1}	1.263	Site-modified spectral acceleration value
S _{DS}	1.531	Numeric seismic design value at 0.2s SA
S _{D1}	0.842	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CRS	1.004	Coefficient of risk (0.2s)

1 of 2 3/4/2021, 9:2**091**M

CR ₁	1.014	Coefficient of risk (1.0s)
PGA	0.81	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.81	Site modified peak ground acceleration
TL	12	Long-period transition period (s)
SsRT	2.297	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.288	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.705	Factored deterministic acceleration value (0.2s)
S1RT	0.842	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.831	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.925	Factored deterministic acceleration value (1.0s)
PGAd	1.015	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

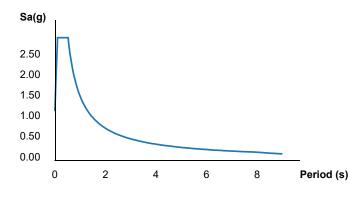
2 392 3/4/2021, 9:20 PM

Address: Oakl Crest Dr

Coordinates: 34.38585, -118.45845

Elevation: 1960 ft

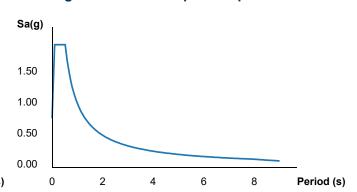
Timestamp: 2021-03-05T04:47:45.298Z


Hazard Type: Seismic

Reference Document:

ASCE7-10

Risk Category: III
Site Class: D


MCER Horizontal Response Spectrum

Imager / ©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.973	MCE _R ground motion (period=0.2s)
S ₁	1.035	MCE _R ground motion (period=1.0s)
S _{MS}	2.973	Site-modified spectral acceleration value
S _{M1}	1.553	Site-modified spectral acceleration value
S _{DS}	1.982	Numeric seismic design value at 0.2s SA
S _{D1}	1.035	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CRS	0.941	Coefficient of risk (0.2s)

1 of 2

CR ₁	0.96	Coefficient of risk (1.0s)
PGA	1.105	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.105	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.973	Probabilistic risk-targeted ground motion (0.2s)
SsUH	3.159	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.997	Factored deterministic acceleration value (0.2s)
S1RT	1.035	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.078	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.244	Factored deterministic acceleration value (1.0s)
PGAd	1.14	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 392 3/4/2021, 9:48 PM

ATC Hazards by Location

Search Information

Address: 18501 Olympian Ct

Coordinates: 34.42394, -118.45715

Elevation: 1749 ft

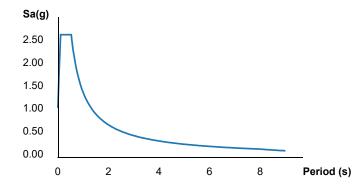
Timestamp: 2021-03-05T04:33:12.331Z

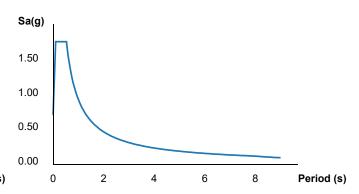
Hazard Type: Seismic

Reference Document:

ASCE7-10

Risk Category:


Site Class: D


MCER Horizontal Response Spectrum

Imager / ©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.686	MCE _R ground motion (period=0.2s)
S ₁	0.948	MCE _R ground motion (period=1.0s)
S _{MS}	2.686	Site-modified spectral acceleration value
S _{M1}	1.422	Site-modified spectral acceleration value
S _{DS}	1.791	Numeric seismic design value at 0.2s SA
S _{D1}	0.948	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CR _S	0.967	Coefficient of risk (0.2s)

1 of 2

CR ₁	0.984	Coefficient of risk (1.0s)
PGA	0.969	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.969	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.686	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.779	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.983	Factored deterministic acceleration value (0.2s)
S1RT	0.948	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.964	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.109	Factored deterministic acceleration value (1.0s)
PGAd	1.152	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 3 9 2 3/4/2021, 9:33 PM

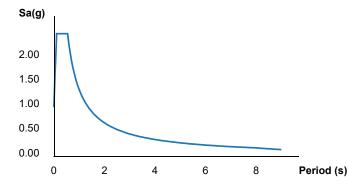
Address: N Pine St, Orange, CA, USA

Coordinates: 34.44958, -118.52516

Elevation: 1616 ft

Timestamp: 2021-03-05T04:23:39.915Z

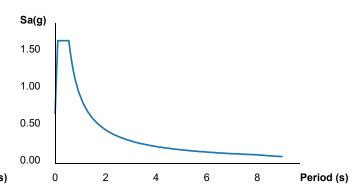
Ш


Hazard Type: Seismic Reference ASCE7-10

Document:

Risk Category:

Site Class: D


MCER Horizontal Response Spectrum

Imagery ©2021, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.489	MCE _R ground motion (period=0.2s)
S ₁	0.905	MCE _R ground motion (period=1.0s)
S _{MS}	2.489	Site-modified spectral acceleration value
S _{M1}	1.357	Site-modified spectral acceleration value
S _{DS}	1.659	Numeric seismic design value at 0.2s SA
S _{D1}	0.905	Numeric seismic design value at 1.0s SA

▼Additional Information

Value	Description
E	Seismic design category
1	Site amplification factor at 0.2s
1.5	Site amplification factor at 1.0s
0.99	Coefficient of risk (0.2s)
	E 1 1.5

3/4/2021, 9:2497M 1 of 2

CR ₁	0.998	Coefficient of risk (1.0s)
PGA	0.88	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.88	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.489	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.514	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.011	Factored deterministic acceleration value (0.2s)
S1RT	0.905	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.906	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.165	Factored deterministic acceleration value (1.0s)
PGAd	1.169	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

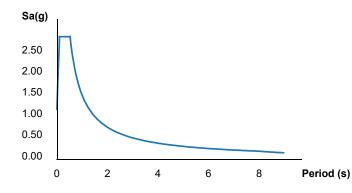
2 3 9 3/4/2021, 9:24 PM

Address: Pacerita Canyon Rd

Coordinates: 34.37487, -118.42567

Elevation: 2046 ft

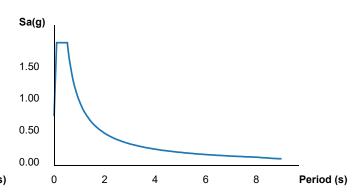
Timestamp: 2021-03-05T04:40:52.877Z


Hazard Type: Seismic

Reference Document:

ASCE7-10

Risk Category: III
Site Class: D


MCER Horizontal Response Spectrum

Imagery ©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Name	Value	Description
S _S	2.892	MCE _R ground motion (period=0.2s)
S ₁	1.009	MCE _R ground motion (period=1.0s)
S _{MS}	2.892	Site-modified spectral acceleration value
S _{M1}	1.513	Site-modified spectral acceleration value
S _{DS}	1.928	Numeric seismic design value at 0.2s SA

Numeric seismic design value at 1.0s SA

Basic Parameters

▼Additional Information

 S_{D1}

1.009

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F_{V}	1.5	Site amplification factor at 1.0s
CRS	0.94	Coefficient of risk (0.2s)

1 of 2

CR ₁	0.961	Coefficient of risk (1.0s)
PGA	1.081	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.081	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.892	Probabilistic risk-targeted ground motion (0.2s)
SsUH	3.075	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.251	Factored deterministic acceleration value (0.2s)
S1RT	1.009	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.05	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.261	Factored deterministic acceleration value (1.0s)
PGAd	1.189	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 392 3/4/2021, 9:41 PM

ATC Hazards by Location

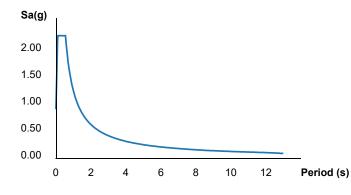
Search Information

Address: N Pine St, Orange, CA, USA

Coordinates: 34.44275, -118.39835

Elevation: 1873 ft

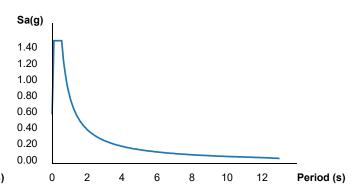
Timestamp: 2021-03-05T04:16:40.927Z


Hazard Type: Seismic

Reference ASCE7-10

Document:

Risk Category: III
Site Class: D


MCER Horizontal Response Spectrum

Map data ©2021 Imagery ©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.283	MCE _R ground motion (period=0.2s)
S ₁	0.839	MCE _R ground motion (period=1.0s)
S _{MS}	2.283	Site-modified spectral acceleration value
S _{M1}	1.258	Site-modified spectral acceleration value
S _{DS}	1.522	Numeric seismic design value at 0.2s SA
S _{D1}	0.839	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CR _S	1.005	Coefficient of risk (0.2s)

1 of 2

CR ₁	1.015	Coefficient of risk (1.0s)
PGA	0.806	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.806	Site modified peak ground acceleration
TL	12	Long-period transition period (s)
SsRT	2.283	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.272	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.694	Factored deterministic acceleration value (0.2s)
S1RT	0.839	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.827	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.92	Factored deterministic acceleration value (1.0s)
PGAd	1.01	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 392 3/4/2021, 9:17 PM

ATC Hazards by Location

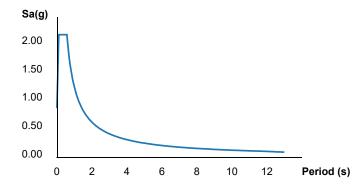
Search Information

Address: N Pine St, Orange, CA, USA

Coordinates: 34.51084, -118.5387

Elevation: 1484 ft

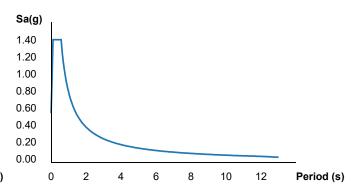
Timestamp: 2021-03-05T04:11:44.365Z


Hazard Type: Seismic Reference

Document:

ASCE7-10

Risk Category: Ш Site Class: D


MCER Horizontal Response Spectrum

wan data ©2021 Imagery ©2021, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.164	MCE _R ground motion (period=0.2s)
S ₁	0.827	MCE _R ground motion (period=1.0s)
S _{MS}	2.164	Site-modified spectral acceleration value
S _{M1}	1.24	Site-modified spectral acceleration value
S _{DS}	1.442	Numeric seismic design value at 0.2s SA
S _{D1}	0.827	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CRS	1.039	Coefficient of risk (0.2s)

3/4/2021, 9:1**2**93M 1 of 2

CR ₁	1.024	Coefficient of risk (1.0s)
PGA	0.758	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.758	Site modified peak ground acceleration
TL	12	Long-period transition period (s)
SsRT	2.164	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.082	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.86	Factored deterministic acceleration value (0.2s)
S1RT	0.827	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.807	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.988	Factored deterministic acceleration value (1.0s)
PGAd	1.084	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 39⁴2

ATC Hazards by Location

Search Information

Coordinates: 34.428466, -118.515572

Elevation: 1431 ft

Timestamp: 2021-03-29T18:31:04.138Z

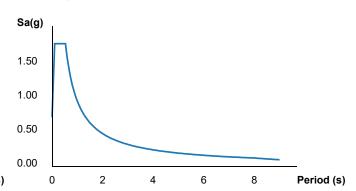
Hazard Type: Seismic

Reference ASCE7-10

Document:

Risk Category:

Site Class: D


1431 ft Wan data ©2021 Imagery ©2021, Maxar Technologies, U.S. Geological Survey,

wan data ©2021 Imagery ©2021 , Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

MCER Horizontal Response Spectrum

Sa(g) 2.50 2.00 1.50 1.00 0.50 0 2 4 6 8 Period (s)

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.716	MCE _R ground motion (period=0.2s)
S ₁	0.961	MCE _R ground motion (period=1.0s)
S _{MS}	2.716	Site-modified spectral acceleration value
S _{M1}	1.442	Site-modified spectral acceleration value
S _{DS}	1.811	Numeric seismic design value at 0.2s SA
S _{D1}	0.961	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _v	1.5	Site amplification factor at 1.0s
CR _S	0.969	Coefficient of risk (0.2s)
CR ₁	0.983	Coefficient of risk (1.0s)

1 of 2 3/29/2021, 2:3²9⁵M

PGA	0.981	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.981	Site modified peak ground acceleration
T _L	8	Long-period transition period (s)
SsRT	2.716	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.805	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.017	Factored deterministic acceleration value (0.2s)
S1RT	0.961	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.978	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.232	Factored deterministic acceleration value (1.0s)
PGAd	1.175	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 30² 3/29/2021, 2:31 PM

Address: 27200 Sand Canyon Rd

Coordinates: 34.40309, -118.41687

Elevation: 1752 ft

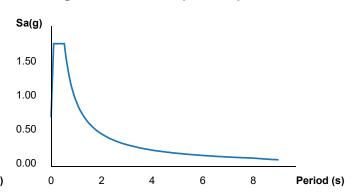
Timestamp: 2021-03-05T04:36:33.700Z

Hazard Type: Seismic

Reference **Document:** ASCE7-10

Risk Category: Ш

Site Class: D


1752 ft mager (©2021, CNES / Airbus, Maxar Technologies, U.S. Geological Survey,

USDA Farm Service Agency

MCER Horizontal Response Spectrum

Sa(g) 2.50 2.00 1.50 1.00 0.50 0.00 0 2 6 8 Period (s)

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.713	MCE _R ground motion (period=0.2s)
S ₁	0.952	MCE _R ground motion (period=1.0s)
S _{MS}	2.713	Site-modified spectral acceleration value
S _{M1}	1.428	Site-modified spectral acceleration value
S _{DS}	1.809	Numeric seismic design value at 0.2s SA
S _{D1}	0.952	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CRS	0.954	Coefficient of risk (0.2s)

3/4/2021, 9:37⁹M 1 of 2

CR ₁	0.975	Coefficient of risk (1.0s)
PGA	0.997	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.997	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.713	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.843	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.996	Factored deterministic acceleration value (0.2s)
S1RT	0.952	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.977	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.133	Factored deterministic acceleration value (1.0s)
PGAd	1.16	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 392 3/4/2021, 9:37 PM

Address: N Pine St, Orange, CA, USA

Coordinates: 34.4551, -118.48029

Elevation: 1823 ft

Timestamp: 2021-03-05T04:30:20.539Z

Hazard Type: Seismic Reference

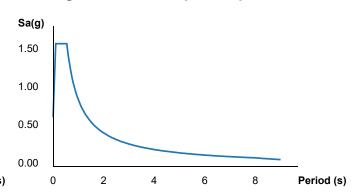
Document:

ASCE7-10

Risk Category:

Ш

Site Class: D


1823 ft

©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

MCER Horizontal Response Spectrum

Sa(g) 2.00 1.50 1.00 0.50 0.00 0 2 4 6 8 Period (s)

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.408	MCE _R ground motion (period=0.2s)
S ₁	0.873	MCE _R ground motion (period=1.0s)
S _{MS}	2.408	Site-modified spectral acceleration value
S _{M1}	1.309	Site-modified spectral acceleration value
S _{DS}	1.605	Numeric seismic design value at 0.2s SA
S _{D1}	0.873	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _v	1.5	Site amplification factor at 1.0s
CRS	0.996	Coefficient of risk (0.2s)

3/4/2021, 9:3⁸9⁸M 1 of 2

CR ₁	1.006	Coefficient of risk (1.0s)
PGA	0.846	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.846	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.408	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.418	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.917	Factored deterministic acceleration value (0.2s)
S1RT	0.873	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.867	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.031	Factored deterministic acceleration value (1.0s)
PGAd	1.114	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 3f⁹ 3/4/2021, 9:30 PM

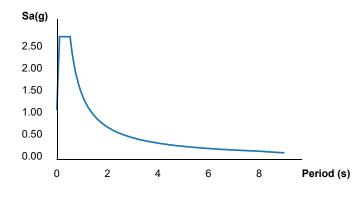
Address: 21575 Deputy Jakes Way

Coordinates: 34.4115746, -118.4497603

Elevation: 1447 ft

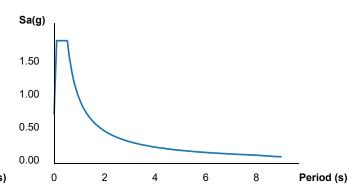
Timestamp: 2021-03-04T20:28:23.975Z

Hazard Type: Seismic Reference


Document:

ASCE7-10

Risk Category: Ш


Site Class: D

MCER Horizontal Response Spectrum

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.788	MCE _R ground motion (period=0.2s)
S ₁	0.977	MCE _R ground motion (period=1.0s)
S _{MS}	2.788	Site-modified spectral acceleration value
S _{M1}	1.465	Site-modified spectral acceleration value
S _{DS}	1.859	Numeric seismic design value at 0.2s SA
S _{D1}	0.977	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CR _S	0.957	Coefficient of risk (0.2s)

3/4/2021, 2:1914M 1 of 2

CR ₁	0.974	Coefficient of risk (1.0s)
PGA	1.017	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	1.017	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.788	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.914	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.006	Factored deterministic acceleration value (0.2s)
S1RT	0.977	Probabilistic risk-targeted ground motion (1.0s)
S1UH	1.002	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.156	Factored deterministic acceleration value (1.0s)
PGAd	1.167	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

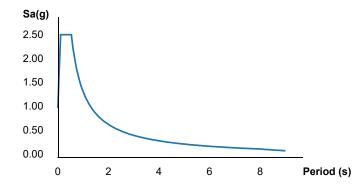
While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Address: N Pine St, Orange, CA, USA

Coordinates: 34.43882, -118.47974

Elevation: 1825 ft

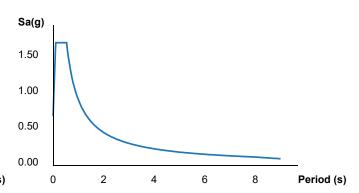
Timestamp: 2021-03-05T04:27:56.668Z


Hazard Type: Seismic Reference

Document:

ASCE7-10

Risk Category: Ш Site Class: D


MCER Horizontal Response Spectrum

©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.566	MCE _R ground motion (period=0.2s)
S ₁	0.916	MCE _R ground motion (period=1.0s)
S _{MS}	2.566	Site-modified spectral acceleration value
S _{M1}	1.374	Site-modified spectral acceleration value
S _{DS}	1.711	Numeric seismic design value at 0.2s SA
S _{D1}	0.916	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _V	1.5	Site amplification factor at 1.0s
CR _S	0.979	Coefficient of risk (0.2s)

3/4/2021, 9:281PM 1 of 2

CR ₁	0.994	Coefficient of risk (1.0s)
PGA	0.914	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.914	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.566	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.621	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.978	Factored deterministic acceleration value (0.2s)
S1RT	0.916	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.921	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.096	Factored deterministic acceleration value (1.0s)
PGAd	1.148	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

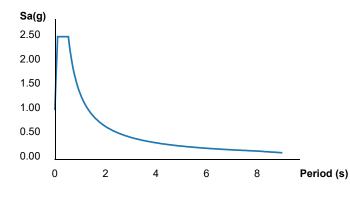
2 3f⁴/2021, 9:28 PM

Address: Winterdale dr

Coordinates: 34.43161, -118.43327

Elevation: 1963 ft

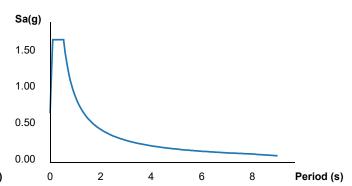
Timestamp: 2021-03-05T04:39:19.511Z


Hazard Type: Seismic Reference

Document:

ASCE7-10

Risk Category: Ш Site Class: D


MCER Horizontal Response Spectrum

Imagery ©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.53	MCE _R ground motion (period=0.2s)
S ₁	0.903	MCE _R ground motion (period=1.0s)
S _{MS}	2.53	Site-modified spectral acceleration value
S _{M1}	1.355	Site-modified spectral acceleration value
S _{DS}	1.686	Numeric seismic design value at 0.2s SA
S _{D1}	0.903	Numeric seismic design value at 1.0s SA

▼Additional Information

alue	Description
	Seismic design category
	Site amplification factor at 0.2s
.5	Site amplification factor at 1.0s
.98	Coefficient of risk (0.2s)
Ę	5

3/4/2021, 9:4**915**M 1 of 2

CR ₁	0.995	Coefficient of risk (1.0s)
PGA	0.904	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.904	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.53	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.582	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.915	Factored deterministic acceleration value (0.2s)
S1RT	0.903	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.908	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.031	Factored deterministic acceleration value (1.0s)
PGAd	1.113	Factored deterministic acceleration value (PGA)

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 3f9 3/4/2021, 9:40 PM

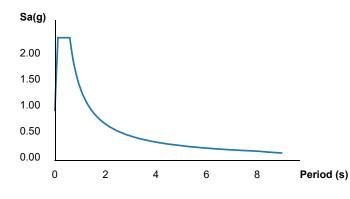
Search Information

Address: Yucca Place

Coordinates: 34.4753, -118.62553

Elevation: 1422 ft

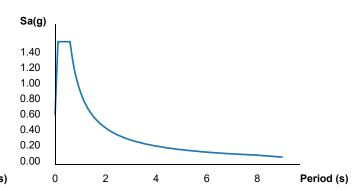
Timestamp: 2021-03-05T05:06:07.895Z


Hazard Type: Seismic

Reference Document:

ASCE7-10

Risk Category: III
Site Class: D


MCER Horizontal Response Spectrum

Imager / ©2021 , CNES / Airbus, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	2.366	MCE _R ground motion (period=0.2s)
S ₁	0.933	MCE _R ground motion (period=1.0s)
S _{MS}	2.366	Site-modified spectral acceleration value
S _{M1}	1.4	Site-modified spectral acceleration value
S _{DS}	1.577	Numeric seismic design value at 0.2s SA
S _{D1}	0.933	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	E	Seismic design category
Fa	1	Site amplification factor at 0.2s
F _v	1.5	Site amplification factor at 1.0s
CRS	1.006	Coefficient of risk (0.2s)

CR ₁	1.005	Coefficient of risk (1.0s)
PGA	0.889	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.889	Site modified peak ground acceleration
TL	8	Long-period transition period (s)
SsRT	2.548	Probabilistic risk-targeted ground motion (0.2s)
SsUH	2.533	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.366	Factored deterministic acceleration value (0.2s)
S1RT	0.933	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.929	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.992	Factored deterministic acceleration value (1.0s)
PGAd	0.91	Factored deterministic acceleration value (PGA)

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

2 3f9 3/4/2021, 10:06 PM

ATTACHMENT B

Errata Sheet for Corrections to the Santa Clarita Valley Water Agency Water Shortage Contingency Plan

The errata sheet logs content and errors that were identified during the public review period of the Santa Clarita Valley Water Agency Water Shortage Contingency Plan.

The corrections/edits will be incorporated into the Final Water Shortage Contingency Plan prior to adoption, attachment, and submittal to the Department of Water Resources. Corrections/edits are noted in the table below.

Item	Page Number	Paragraph Number	Previous Text	Edited Text
1	ii	1	Appendix B: SCV Water Shortage Communications Plan	Appendix B: Seismic Analysis
2	2	1	Footnote 1 – This section is based on the 2015 UWMP and 2017 Supply Reliability Analysis. These documents are periodically updated, and subsequent updates will be incorporated in the WSCP pursuant to completion.	Delete Footnote 1
3	2	1	the SCV Water's supply analysis in the UWMP Chapter 6 and its water reliability findings in UWMP Chapter 7	SCV Water's supply analysis and its water reliability findings in UWMP Section 7 (Reliability Planning and Drought Risk Assessment)
4	3	1	7 Table	Tables 4.8B and 4.8C (2020 UWMP Appendix E)
5	3	1	Table	Tables 4.9B and 4.9C (2020 UWMP Appendix E)
6	47	1	the Agency adopted Ordinance No in 2021 which prohibits the waste of water and imposes water conservation requirements on customers. Ordinance No	the Agency is adopting the Water Conservation and Water Shortage Ordinance (WCWSO) in 2021, which prohibits the waste of water and imposes water conservation requirements on customers (Water Shortage Contingency Plan – Appendix A). The WCWSO
7	47	1	Ordinance No also provides for the enforcement of all requirements and restrictions, and has a process for appeals.	The WCWSO also provides for the enforcement of all requirements and restrictions, and has a process for appeals.
8	56	Appendix B	Appendix B: SCV Water Shortage Communications Plan	Appendix B: SCV Water Seismic Analysis

[This page intentionally left blank.]

ATTACHMENT C

RESOLUTION NO. XXXX

RESOLUTION OF THE SANTA CLARITA VALLEY WATER AGENCY ADOPTING A WATER SHORTAGE CONTINGENCY PLAN (WSCP)

WHEREAS, The California Urban Water Management Planning Act, (Wat. Code §10610, et seq. (the Act)), mandates that every urban supplier of water providing water for municipal purposes to more than 3,000 customers or supplying more than 3,000 acre feet of water annually, prepare and adopt, in accordance with prescribed requirements, a Water Shortage Contingency Plan (WSCP) as part of its Urban Water Management Plan (Plan); and

WHEREAS, the Act specifies the requirements and procedures for adopting such WSCPs; and

WHEREAS, pursuant to recent amendments to the Act, urban water suppliers are required to adopt and electronically submit their WSCPs to the California Department of Water Resources (DWR) by July 1, 2021; and

WHEREAS, pursuant to the Act, "urban water supplier" means a supplier, either publicly or privately owned, providing water for municipal purposes either directly or indirectly to more than 3,000 customers or supplying more than 3,000 acre-feet of water annually. An urban water supplier includes a supplier or contractor for water, regardless of the basis of right, which distributes or sells for ultimate resale to customers; and

WHEREAS, the Santa Clarita Valley Water Agency (SCV Water) meets the definition of an urban water supplier for purposes of the Act and is required to prepare and adopt and WSCP as part of its 2020 Plan; and

WHEREAS, SCV Water has prepared a WSCP in accordance with the Act, and in accordance with applicable legal requirements, has undertaken certain coordination, notice, public involvement, public comment, and other procedures in relation to its WSCP; and

WHEREAS, in accordance with the Act, SCV Water has prepared its WSCP with its own staff, with the assistance of consulting professionals, and in cooperation with other governmental agencies, and has utilized and relied upon industry standards and the expertise of industry professionals in preparing its WSCP, and has also utilized DWR's Urban Water Management Plan Guidebook 2020, including its related appendices, in preparing its WSCP; and

WHEREAS, in accordance with applicable law, including Water Code section 10642, and Government Code section 6066, a Notice of a Public Hearing regarding SCVWA's WSCP was published within the jurisdiction of SCVWA on May 26, 2021 and June 4, 2021; and

WHEREAS, in accordance with applicable law, including but not limited to Water Code section 10642, a public hearing was held on Wednesday, June 9, 2021 at 6:00 PM (PST) or soon thereafter, in https://scvwa.zoomgov.com/j/1605774067, Call-In Number 1-(833)-568-8864, Webinar ID: 160 577 4067 in order to provide members of the public and other interested entities with the opportunity to be heard in connection with proposed adoption of the WSCP and issues related thereto; and

WHEREAS, pursuant to said public hearing on SCV Water's WSCP, SCVWA, among other things, encouraged the active involvement of diverse social, cultural, and economic members of the community within SCV Water's service area with regard to the WSCP, and encouraged community input regarding SCV Water's WSCP; and

WHEREAS, the SCV Water Board of Directors has reviewed and considered the purposes and requirements of the Act, the contents of the WSCP, and the documentation contained in the administrative record in support of the WSCP, and has determined that the factual analyses and conclusions set forth in the WSCP are legally sufficient; and

WHEREAS, the SCV Water Board of Directors desires to adopt the WSCP and to incorporate it as part of its 2020 Plan prior to July 1, 2021 in order to comply with the Act; and

WHEREAS, Section 10652 of the California Water Code provides that the California Environmental Quality Act (Division 13 (commencing with Section 21000) of the Public Resources Code) (CEQA) does not apply to the preparation and adoption of a WSCP as part of Plan pursuant to California Water Code section 10632.

NOW THEREFORE BE IT RESOLVED, the SCVWA Board of Directors of the Santa Clarita Valley Water Agency hereby resolves as follows:

- 1. The Water Shortage Contingency Plan (WSCP) is hereby adopted as amended by changes incorporated by the SCV Water Board of Directors as a result of input received (if any) at the public hearing and ordered filed with the Secretary of the SCV Water Board of Directors and shall be incorporated into SCV Water's 2020 Plan.
- 2. The General Manager is hereby authorized and directed to include a copy of this Resolution in SCV Water's WSCP and/or in SCV Water's 2020 Plan.
- 3. The General Manager is hereby authorized and directed, in accordance with Water Code sections 10621(d) and 10644(a)(1)-(2), to electronically submit a copy of the WSCP, as part of its 2020 Plan, to DWR no later than July 1, 2021.
- 4. The General Manager is hereby authorized and directed, in accordance with Water Code section 10644(a), to submit a copy of the WSCP, as part of its 2020 Plan, to the California State Library, and to any city or county within which SCV Water provides water supplies no later than thirty (30) days after this adoption date.
- 5. The General Manager hereby authorized and directed, in accordance with Water Code section 10645, to make the WSCP available for public review at SCV Water's offices during normal business hours and on its website at https://YourSCVwater.com no later than thirty (30) days after filing a copy of the WSCP, as part of its 2020 Plan, with DWR.
- 6. The General Manager is hereby authorized and directed to implement the WSCP in accordance with the Act and to provide recommendations to the SCV Water Board of Directors regarding the necessary budgets, procedures, rules, regulations, or further actions to carry out the effective and equitable implementation of the WSCP.
- 7. SCV Water Board of Directors finds and determines that this resolution is not subject to CEQA pursuant to Water Code Section 10652 because CEQA does not apply to the preparation and adoption of a WSCP or to the implementation of the actions taken pursuant to

such plans. Because this resolution comprises SCV Water Board of Director's adoption of its WSCP and involves its implementation, no CEQA review is required.

- 8. Pursuant to CEQA, the SCV Water Board of Directors directs staff to file a Notice of Exemption with the Los Angeles and Ventura County Clerk's office within five (5) working days of adoption of this resolution.
- 9. The document and materials that constitute the record of proceedings on which this resolution and the above findings have been based are located at Los Angeles County, 12400 Imperial Highway, Norwalk, Ca 90650, and Ventura County, 800 South Victoria Avenue, Ventura, Ca 93009-1260. The custodian for these records is the Santa Clarita Valley Water Agency.

ADOPTED, this [DATE].

[This page intentionally left blank.]

ITEM NO. 5.3

BOARD MEMORANDUM

DATE: June 9, 2021

TO: Board of Directors

FROM: Matthew S. Dickens, MPA

Sustainability Manager

SUBJECT: Public Hearing on the Water Conservation and Water Shortage Ordinance

SUMMARY AND DISCUSSION

As part of its Water Shortage Contingency Planning process, agency staff and consultants developed the Water Conservation and Water Shortage Ordinance (WCWSO). The WCWSO aligns with the current iteration of the Water Shortage Contingency Plan and enables SCV Water to establish water conservation and water supply shortage restrictions. The WCWSO rescinds legacy regulations and establishes one conservation ordinance to apply throughout its service territory. This staff report includes summary of both the WCWSO and an overview of Public Engagement, Public Comments, and Public Hearing Noticing activities. The approved WCWSO will be attached to the Water Shortage Contingency Plan and included in the 2020 UWMP. Staff recommends the Board adopt the Water Conservation and Water Shortage Ordinance.

Water Conservation and Water Shortage Ordinance

The WCWSO contains water conservation restrictions that increase during stages of declared water shortage and may be enforced pursuant to the provisions of the WCWSO. The WCWSO includes mandatory restrictions that prohibit certain wasteful water use activities and places limitations on outdoor water use (e.g. number of days, days per week, and time of day). The water use restrictions escalate upon declaration of stages of water shortage by the SCV Water Board of Directors. The WCWSO includes penalties for violations and compliance mechanisms, as well as an appeals process. The Draft WCWSO is included in the Board of Directors' packet.

Public Engagement, Public Hearing Noticing, and Public Comments

Public Engagement

Public engagement is a critical component of the planning process as it enables SCV Water to educate the public, gather input, solicit feedback, and connect stakeholders and the public with opportunities to ask questions and receive answers. For the WCWSO, many engagement formats were provided including, but not limited to:

- Updates to Water Resources and Watershed Committee (November 2020 March 2021 Meetings)
- Public Workshop (January 28, 2021)
- Thirty-Day Public Comment Period (March 12, 2021 thru April 12, 2021)
- Water Resources and Watershed Committee (April 14, 2021 Meeting)

• Comments and Questions via email: wscp@scvwa.org

Additionally, public engagement opportunities included:

- Public Hearing for the WCWSO (June 9, 2021)
- Comments and Questions via email: wscp@scvwa.org

Regarding notice to the City of Santa Clarita, Los Angeles and Ventura Counties, United Water Conservation District, and Los Angeles Sanitation District, SCV Water provided advance notice of updates to the Urban Water Management Plan, Water Shortage Contingency Plan, and Water Conservation and Water Shortage Ordinance in October 2020 and March 2021.

Public Comments

SCV Water uploaded the Draft WCWSO to its website and notified the public regarding the thirty-day public comment period on March 12, 2021. SCV Water received 12 comments from the public via email at wscp@scvwa.org. Qualitatively, comments received address concerns regarding methodology for declaring a shortage stage, implementation, response stages, demand reductions, exemptions, variances, enforcement and penalties. Staff continued to monitor the wscp@scvwa.org account for electronic comments and incoming mail for written comments beyond the close of the thirty-day public comment period on April 12, 2021. Comments received will be summarized and presented to the Board at the Public Hearing on June 9, 2021.

Public Hearing Noticing

The SCV Water Board of Directors will hold distinct public hearing for the WCWSO on Wednesday, June 9, 2021. The Public Hearings were conducted via Zoom Webinar and could be accessed using the following credentials:

https://scvwa.zoomgov.com/j/1605774067

Or Telephone:

833 568 8864 (Toll Free)

Webinar ID: 160 577 4067

Notice of the public hearing was published in the SCV Signal for two successive weeks (14 calendar days), at least two times (May 26, 2021 and June 4, 2021), with at least five days between publication dates, as prescribed by Government Code section 6066. Additionally, SCV Water published advertisements for supplemental public awareness via social media, online advertising, and via email notifications.

Attachments included in this report consist of the Draft Water Conservation and Water Shortage Ordinance and the Water Conservation and Water Shortage Ordinance Errata 1. Errata 1 includes formatting corrections and the Alternative Performance Compliance Waiver.

ATTACHMENTS

- A. Draft Water Conservation and Water Shortage Ordinance
- B. Water Conservation and Water Shortage Ordinance Errata 1

M65

ATTACHMENT A

ORDINANCE NO. XX

AN ORDINANCE OF THE BOARD OF DIRECTORS OF THE SANTA CLARITA VALLEY WATER AGENCY TO ESTABLISH WATER CONSERVATION AND WATER SUPPLY SHORTAGE RESTRICTIONS AND REGULATIONS

WHEREAS, the Santa Clarita Valley Water Agency (Agency) was created on January 1, 2018 by the Santa Clarita Valley Water Agency Act (SB 634, Chapter 833, 2017) and is the successor entity to the Castaic Lake Water Agency and Newhall County Water District, which were merged into SCV Water through SB 634; and

WHEREAS, pursuant to SB 634, Valencia Water Company, a former private retail water provider in the Santa Clarita Valley, was dissolved and its assets were transferred to the Agency in January 2018; and

WHEREAS Castaic Lake Water Agency, Newhall County Water District, and Valencia Water Company each had water conservation regulations in place and the Agency now desires to adopt one conservation ordinance to apply throughout its service area; and

WHEREAS, this Ordinance has six escalating stages of water shortage regulations and is consistent with new requirements in the Water Code for Urban Water Management Plans; and

WHEREAS, California Constitution Article X, Section 2 and California Water Code Section 100 provide that because of conditions prevailing in the state of California (State), it is declared policy of the State that the general welfare requires that the water resources of the State shall be put to beneficial use to the fullest extent of which they are capable, the waste of water or unreasonable use of or unreasonable method of use of water shall be prevented, and the conservation of such waters is to be exercised with a view to the reasonable and beneficial use thereof in the interest of the people and the public welfare; and

WHEREAS, in addition to Article X, Section 2, the Agency has the authority to adopt and enforce water conservation restrictions pursuant to Water Code sections 375 and 31026, and the Santa Clarita Valley Water Agency Act, (SB 634, Chapter 833 2017 Section 17); and

WHEREAS, pursuant to California Water Code Section 350, the Board of Directors is authorized to declare a water shortage emergency to prevail within its jurisdiction when it finds and determines that the Agency will not be able to or cannot satisfy the ordinary demands and requirements of water consumers without depleting supplies of the Santa Clarita Valley to the extent that there would be insufficient water for human consumption, sanitation, and fire protection; and

WHEREAS, because of persistent and unpredictable water conditions in the State, statutory requirements for water planning, and the declared policy of the State, the Agency hereby finds and determines that it is necessary and appropriate for SCV Water to adopt, implement, and enforce a water conservation program with stages of water shortage restrictions, including

emergency stages, to reduce the quantity of water used by consumers within SCV Water, to preserve water supplies, to prevent the waste or unreasonable use or unreasonable method of use of water, and to ensure that there is sufficient water for human consumption, sanitation, and fire protection.

NOW, THEREFORE, BE IT RESOLVED AS FOLLOWS:

<u>Section 1</u>. <u>Findings and Determinations.</u> The Agency hereby finds and determines that the above recitals are true and correct and incorporated herein.

Section 2. Rescission of Previous Regulations. Castaic Lake Water Agency Ordinance No. 44, Newhall County Water District Ordinance No. 117, and Valencia Water Company Rule 14.1 are hereby repealed and replaced by this Ordinance.

<u>Section 3</u>. <u>General Water Use Efficiency Recommendations</u>. The following recommendations are smart management practices for indoor and outdoor water use. Since more severe effects of a water shortage are often brought about due to wasteful water use habits carried over from times of sufficient supply, these certain water-use practices are encouraged at all times.

3.1 Outdoor Water Use Efficiency Recommendations

- a. Irrigation systems should be checked monthly for breaks and adjusted so that overspray, runoff and water waste are avoided.
- b. Repair all water system leaks within 24 hours of detection or before next scheduled watering cycle.
- c. Drip irrigation for plantings and high efficiency nozzles for turf should be considered where appropriate.
- d. Shredded bark mulch, spread at a minimum 3" depth, should cover all bare earth and landscape planting areas to help soil retain moisture and keep weeds from growing.
- e. Turf should be core aerated annually.
- f. Replace underutilized turf areas with low water use plants and mulch.
- Pool covers should be used to reduce evaporation.
- h. The following watering schedule should be maintained throughout the year during average rainfall years: December-January (1x/week), February, March and November (1-2x/week), April and October (2x/week), May and September (2-3x/week), June, July and August (3x/week). Irregularities in average temperatures could cause the actual scheduling to be adjusted either more or less.
- i. Due to mostly clay soils in the Santa Clarita Valley, where clay soils have slow absorption rates (~1/5 (.2) inches/hour), irrigation runtimes should incorporate a cycle-and-soak schedule to allow maximum absorption of applied water and to greatly reduce/eliminate runoff. Runtimes for each cycle should not exceed the amount of time it takes for runoff to occur (example if runoff occurs after 6 minutes, each cycle should be set to run no more than 5 minutes).

3.2 Indoor Water Use Efficiency Recommendations

- a. All leaks to faucets, toilets, and indoor pipes should be repaired immediately.
- b. WaterSense Certified devices for plumbing faucets, toilets, and showers should be used.
- c. Install 1.0 gallon per flush ultra-low-flow toilets or dual-flush toilets.
- d. Water-efficient Energy Star® appliances such as clothes washer and dishwashers should be used.
- e. Showers should be limited to 5 minutes.
- f. To promote water conservation, operators of hotels and motels should provide guests with the option of choosing not to have towels and linens laundered daily. The hotel or motel should prominently display notice of this option in each guestroom in a clear and easily understood manner.
- g. Eating or drinking establishments, including but not limited to restaurants, hotels, cafés, cafeterias, bars, or other public places where food or drink are served and/or purchased, should only serve drinking water upon request.

<u>Section 4</u>. <u>Watering Restrictions</u>. To promote water conservation and prevent the waste, unreasonable use or unreasonable method of use of water, each of the following actions are discouraged at all times:

- a. Allowing runoff onto non-irrigated areas when irrigating with potable water.
- b. Using hoses with no shutoff nozzles to wash cars.
- c. Using potable water to wash sidewalks, driveways, and hardscapes.
- Using potable water in decorative water features that do not recirculate the water.
- e. Irrigating outdoors during and within 48 hours following measurable precipitation (quarter-inch or more).
- f. Irrigation with potable water of landscapes outside of newly constructed homes and buildings in a manner inconsistent with regulations or other requirements established by the California Building Standards Commission and the Department of Housing and Community Development, including the Model Water Efficient Landscape Ordinance updated by the State as required by AB 1881 and Executive Order B-29-15 issued by Governor Jerry Brown on April 1, 2015.
- g. The irrigation with potable water of ornamental turf on public street medians.

Section 5. Stage 1 Water Shortage.

A Stage 1 Water Shortage condition exists when the Agency determines in its sole discretion that due to drought, state regulations, or other water supply conditions, a reduction in water use is necessary to make the most efficient use of water and appropriately respond to existing water and regulatory conditions. The water use reduction goal during a Stage 1 Water Shortage

condition is up to 10%. Upon declaration by the Agency of a Stage 1 Water Shortage condition, the following water conservation restrictions go into effect:

a. The actions described in Section 4 above are prohibited.

Section 6. Stage 2 Moderate Water Shortage

A Stage 2 Moderate Water Shortage condition exists when the Agency determines in its sole discretion that due to drought, state regulations, or other water supply conditions, a reduction in water use is necessary to make the most efficient use of water and appropriately respond to existing water and regulator conditions. The water use reduction goal during a Stage 2 Moderate Water Shortage condition is 10-20%.

- 6.1 <u>Additional Measures.</u> Upon declaration by the Agency of a Stage 2 Moderate Water Shortage condition, in addition to the requirements for a Stage 1 Water Shortage, the following water conservation restrictions shall be in effect:
 - a. Limits on Watering Days
 Outdoor irrigation of ornamental landscapes or turf with potable water is restricted to three (3) days per week. Customers with street addresses ending in an odd number (1,2,5,7,9) may only water on Monday, Wednesday, and Friday. Customers with street addresses ending in an even number (0,2,4,6,8) may only water Tuesday, Thursday, and Sunday. Outdoor irrigation of ornamental landscapes or turf with potable water is prohibited on Saturdays. Customers with multiple accounts on the same property must select either an even or odd address watering schedule for their property.
 - Limits on Watering Station Run Time (Duration)
 Outdoor irrigation of ornamental landscapes or turf with potable water is limited to no more than Two 5-minute cycles (10 Minutes Max.) per watering station (recommend Cycle & Soak Schedule See 3.1.i).
 - Watering Times (Time of Day)
 Outdoor irrigation of ornamental landscapes or turf with potable water must occur during the following timeframes:

November through April – 6 PM to 10 AM May through October – 8 PM to 9 AM

d. The watering time limitations in this Section do not apply to landscape irrigation zones that use drip irrigation and/or low precipitation rated High-Efficiency rotary nozzles (equal to or less than 1 inch per hour).

Section 7. Stage 3 Significant Water Shortage

A Stage 3 Significant Water Shortage exists when the Agency determines in its sole discretion that due to drought, state regulations, or other water supply conditions, a reduction in water use is necessary to make the most efficient use of water and appropriately respond to existing water and regulatory conditions. The water use reduction goal during a Stage 3 Significant Water Shortage condition is 20-30%.

- 7.1 Additional Measures. Upon declaration by the Agency of a Stage 3 Significant Water Shortage condition, in addition to the requirements for a Stage 1 and Stage 2 Water Shortage, the following water conservation restrictions shall be in effect. If there is a conflict between the restrictions in certain stages, the restrictions in the higher level stage will apply.
 - a. Limits on Irrigation Watering Days
 During the months of April, May, June, July, August, September, and
 October, outdoor irrigation of ornamental landscapes or turf with potable
 water is restricted to three (3) days per week. Customers with street
 addresses ending in an odd number (1,3,5,7,9) may only water on
 Monday, Wednesday and Friday. Customers with street addresses
 ending in an even number (0,2,4,6,8) may only water Tuesday, Thursday
 and Sunday. Outdoor irrigation of ornamental landscapes or turf with
 potable water is prohibited on Saturdays. Customers with multiple
 accounts on the same property must select either an even or odd address
 watering schedule for their property.
 - b. During the months of November, December, January, February and March, outdoor irrigation of ornamental landscapes or turf with potable water is restricted to two (2) days per week. Customers with street addresses ending in an odd number (1,3,5,7,9) may only water on Monday and Thursday. Customers with street addresses ending in an even number (0,2,4,6,8) may only water on Tuesday and Friday. Outdoor irrigation of ornamental landscapes or turf with potable water is prohibited on Wednesdays, Saturdays and Sundays
 - Limits on Watering Station Run Times (Duration)
 Outdoor irrigation of ornamental landscapes or turf with potable water is limited to no more than Two 5-minute cycles (10 Minutes Max.) per watering station (recommend Cycle & Soak Schedule See 3.1.i).
 - d. Watering Times (Time of Day)
 Outdoor irrigation of ornamental landscapes or turf with potable water must occur during the following timeframes:

November through April – 6 PM to 10 AM May through October – 8 PM to 9 AM

e. The watering time limitations in this Section do not apply to landscape irrigation zones that use drip irrigation and/or low precipitation rated High-Efficiency rotary nozzles (equal to or less than 1 inch per hour).

Section 8. Stage 4 Critical Water Shortage

A Stage 4 Critical Water Shortage exists when the Agency determines in its sole discretion that due to drought, state regulations, or other water supply conditions, a reduction in water use is necessary to make the most efficient use of water and appropriately respond to existing water and regulatory conditions. The water use reduction goal during a Stage 4 Critical Water Shortage condition is 30-40%.

- 8.1 <u>Additional Measures.</u> Upon declaration by the Agency of a Stage 4 Critical Water Shortage condition, in addition to the requirements for a Stage 1, Stage 2, and Stage 3 Water Shortage, the following water conservation restrictions shall be in effect. If there is a conflict between the restrictions in certain stages, the restrictions in the higher level stage will apply.
 - a. Limits on Irrigation Water Days Outdoor irrigation of ornamental landscapes or turf with potable water is restricted to two (2) days per week at all times. Customers with street addresses ending in an odd number (1,3,5,7,9) may only water on Monday and Thursday. Customers with street addresses ending in an even number (0,2,4,6,8) may only water on Tuesday and Friday. Outdoor irrigation of ornamental landscapes or turf with potable water is prohibited on Wednesdays, Saturdays and Sundays. Customers with multiple accounts on the same property must select either an even or odd address watering schedule for their property.
 - Irrigation Watering Times (Duration)
 Outdoor irrigation of ornamental landscapes or turf with potable water is limited to no more than Two 5-minute cycles (10 Minutes Max.) per watering station (recommend Cycle & Soak Schedule See 3.1.i).
- c. Irrigation Watering Times (Time of Day) Outdoor irrigation of ornamental landscapes or turf with potable water must occur during the following timeframes:

November through April – 6 PM to 10 AM May through October – 8 PM to 9 AM

e. Watering time limitations above do not apply to landscape irrigation zones that use drip irrigation and/or low precipitation rated High-Efficiency rotary nozzles (equal to or less than 1 inch per hour).

Section 9. Stage 5 Emergency Water Shortage

A Stage 5 Emergency Water Shortage exists when the Agency determines in its sole discretion that due to drought, state regulations, or other water supply conditions, an emergency situation exists that requires a significant reduction in water use in order to maintain sufficient water supplies for public health and safety. The water use reduction goal during a Stage 5 Emergency Water Shortage is 40-50%.

- 9.1 <u>Additional Measures.</u> Upon declaration by the Agency of a Stage 5 Emergency Water Shortage condition, in addition to the requirements for a Stage 1, Stage 2, Stage 3, and Stage 4 Water Shortage, the following water conservation restrictions shall be in effect. If there is a conflict between the restrictions in certain stages, the restrictions in the higher level stage will apply.
 - a. The recommendations in Section 3.2(f) and 3.2(g) above are mandatory.
 - b. Limits on Irrigation Water Days
 Outdoor irrigation of ornamental landscapes or turf with potable water is restricted to one (1) day per week. Customers with street addresses ending in an odd number (1,3,5,7,9) may only water on Monday.
 Customers with street addresses ending in an even number (0,2,4,6,8) may only water on Thursday. Outdoor irrigation of ornamental landscapes or turf with potable water is prohibited on Tuesdays, Wednesdays, Fridays, Saturdays and Sundays. Customers with multiple accounts on the same property must select either an even or odd address watering schedule for their property.
 - Irrigation Watering Times (Duration)
 Outdoor irrigation of ornamental landscapes or turf with potable water is limited to no more than Two 5-minute cycles (10 Minutes Max.) per watering station (recommend Cycle & Soak Schedule See 3.1.i).
 - d. Irrigation Watering Times (Time of Day)
 Outdoor irrigation of ornamental landscapes or turf with potable water must occur during the following timeframes:

November through April – 6 PM to 10 AM May through October – 8 PM to 9 AM

- e. No potable water may be used for new landscaping installed after the declaration of a Stage 5 Emergency Water Shortage except for drought tolerant plants requiring less than typical water requirements.
- f. No potable water may be used for any lawn, whether by seed or sod, established after the declaration of a Stage 5 Emergency Water Shortage.

- g. No pools or spas may be filled with potable water, but existing water levels may be maintained.
- No New Potable Water Service.

Upon declaration of a Stage 5 Emergency Water Shortage condition, no new potable water service will be provided, no new temporary meters or permanent meters will be provided, and no statements of immediate ability to serve or provide potable water service will be issued, except under the following circumstances:

- A valid, unexpired building permit has been issued for the project;
- The project is necessary to protect the public health, safety, and welfare; or
- The applicant provides substantial evidence of an enforceable commitment that water demands for the project will be offset prior to the provision of a new water meter(s) to the satisfaction of the Agency.

This Section 9.1(h) does not preclude the resetting or turn-on of meters to provide continuation of water service or the restoration of service that has been interrupted for a period of one year or less.

- i. Potable water may not be used for grading.
- j. Potable water may not be used to wash vehicles, except at commercial facilities that recycle water.
- k. Street cleaning with potable water is prohibited.

Section 10. Stage 6 Catastrophic Water Shortage

A Stage 6 Catastrophic Water Shortage exists when the Agency determines in its sole discretion that due to drought, state regulations, or other water supply conditions, a catastrophic situation exists that requires a significant reduction in water use in order to maintain sufficient water supplies for public health and safety. The water use reduction goal during a Stage 6 Catastrophic Water Shortage is more than 50%.

- 10.1 <u>Additional Measures.</u> Upon declaration by the Agency of a Stage 6 Catastrophic Water Shortage condition, in addition to the requirements for a Stage 1, Stage 2, Stage 3, Stage 4, and Stage 5 Water Shortage, the following water conservation restrictions shall be in effect. If there is a conflict between the restrictions in certain stages, the restrictions in the higher level stage will apply.
 - No Irrigation Watering
 Water or irrigating of outdoor lawns, landscape, or other vegetated area with potable water is prohibited.

Section 11. Penalties & Enforcement

The General Manager and other authorized Agency representatives have the duty to enforce the provisions of this Ordinance consistent with this Section. The Agency's intent and goal in implementing the contents of this Section is to conserve water resources and generate the greatest benefit for the Agency customers during times of drought and water shortages. The Agency is committed to verifying complaints of excessive water use prior to deeming a customer is in violation and prior to taking enforcement actions. The Agency is focused on communication and education and enforcement as necessary.

- 11.1. Penalties for failure to comply with any provision of this Ordinance are as follows:
 - a. First Violation: A written notice will be provided to the customer by mail or personal delivery.
 - b. Second Violation: For a second violation within twelve (12) calendar months of the first violation, a written notice of non-compliance will be provided to the customer by mail or personal delivery and a fine of \$50 per violation will be imposed.
 - c. Third and Subsequent Violations: For a third violation within twelve (12) calendar months of the first violation, a written notice of non-compliance will be provided to the customer by mail or personal delivery and a fine of \$100 per violation and an increase of \$100 for each subsequent violation up to a maximum of \$500 per day will be imposed.
 - d. After a third violation within twelve months, the Agency may install a flow restrictor. It is the customer's responsibility to pay for the installation and removal of any such flow restrictor and the Agency may collect such costs from the customer. The Agency is under no obligation to provide sufficient fire flow to the customer after the third notice of violation within twelve months. This requirement is the sole responsibility of the customer.

11.2 Additional Penalties

- In addition to any fines and the installation of a water flow restrictor imposed pursuant to this Section, the Agency may shut off a customer's water service for willful violations of mandatory restrictions in this Ordinance.
- b. Leak Shut Off Irrigation Meters In instances where a leak is observed on the customer's side of a dedicated irrigation system or water meter, the Agency may immediately shut off such system and/or meter and may issue a notice of violation as provided for in this Ordinance. Water service will not be reinstated until such leak is repaired.

Page **9** of **12**

11.3 Separate Violations:

Each violation of this Ordinance is a separate offense.

11.4 Appeals:

The Agency will issue a Notice of Violation by mail or personal delivery. Customers may appeal a Notice of Violation by filing a written appeal with the Agency within ten (10) days of the date of the Notice of Violation. Any Notice of Violation not timely appealed will be final. Upon receipt of a timely appeal, a hearing on the appeal will be scheduled, and the Agency will mail written notice of the hearing date to the customer at least ten (10) days before the date of the hearing. The Agency's General Manager, or authorized delegate, shall serve as the hearing officer and make any and all decisions regarding any appeals. The Agency shall promptly send written notification of any decision and all decisions are final.

Section 12. Waivers

- a. Undue or Disproportional Hardship:
 - If, due to unique circumstances, a specific requirement of this Ordinance would result in undue hardship to a person using water or to property upon which water is used, that is disproportionate to the impacts to the water users generally or to similar property or classes of water users, then the person may apply for a waiver to the requirements as provided in this section.
- b. Establishment Waiver
 - Customers installing or renovating landscaped areas may qualify for a waiver if the Agency determines that additional watering is required to plant and maintain those landscaped areas for a limited amount of time. If such a determination is made, the Agency will provide the customer with an allowable watering schedule, which will include an allocated increase in water use, and when such watering schedule exception will expire. Any violation of the schedule will be punishable as described in this Ordinance. Approval of establishment waivers will be based on current conservation targets and the Agency's ability to meet those targets.
- c. Alternative Performance Compliance Waiver Customers with more than ten (10) active master-controlled smart weather-based irrigation controllers may qualify for the Alternative Performance Compliance Waiver. An Alternative Performance Compliance Waiver would relieve qualifying and approved customers from having to comply with the Limits on Watering Days, Limits on Watering Times (Duration), and Irrigation Watering Times (Time of Day) in Water Shortage Stages 2-5. In order to qualify, customers with more

than ten (10) active master-controlled smart weather-based irrigation controllers must agree to reduce their water use by the water use reduction goal percentage in each declared Stage of Water Shortage. Failure to comply with the applicable water use reduction goal percentage in the applicable declared Stage of Water Shortage will result in expiration of the waiver and such violations will be punishable as described in this Ordinance.

d. Application:

A person wishing to receive a waiver pursuant to this section must submit a written request/application to the Agency, which should include a statement describing the reasons for the request, a detailed watering schedule, duration of waiver, and any other relevant information to support the request, including but not limited to any photographs, drawings, or maps.

e. Written Finding:

The waiver may be granted or conditionally granted only upon a written finding of the existence of unique circumstances and facts demonstrating an undue hardship to a person using water or to property upon which water is used, that is disproportionate to the impacts to water users generally or to similar property or classes of water use due to specific and unique circumstances of the user or the user's property. The findings must also include a determination that, based on the information in the request/application and any other relevant information, a waiver does not constitute a grant of special privilege inconsistent with the limitations upon other residents and businesses.

f. Approval Authority

The General Manager or authorized delegate of the Agency must act on any completed application no later than ten (10) business days after submittal. The Agency may request a site visit, if needed, to verify or collect any missing information needed to make the final decision. The General Manager or authorized delegate may approve, conditionally approve, or deny the waiver request. The applicant requesting the waiver must be promptly notified in writing of any action taken. The decision of the General Manager or authorized delegate is final.

Section 13. CEQA Exemption

The adoption of this ordinance is not subject to the requirements of the California Environmental Quality Act ("CEQA"), or, alternatively, is exempt from CEQA. As only water conservation would result from the implementation of the Ordinance's provisions, the Ordinance would not commit the Agency to any action that would result in any significant environmental effects. As a result, per State CEQA Guidelines §15378, the Ordinance does not constitute a project subject to requirements of CEQA. Alternatively, the adoption of this Ordinance is exempt from CEQA under State CEQA Guidelines, §15061 (b)(3) and §15308 because CEQA only applies to projects that have the potential for causing a significant effect on the environment and it can be seen with certainty that there is no possibility that the Ordinance will have a significant effect on

the environment, and because the Ordinance would result in the conservation of water, a limited and currently scare resource, and would, therefore, have a beneficial effect on the environment. On this basis, and the on the basis of the information contained in the whole of the administrative record, the adoption of this Ordinance requires no further analysis under CEQA.

Section 14. Severability

If any provision of this ordinance or the application thereof to any person or circumstance is held invalid, such invalidity shall not affect other provisions or applications of the ordinance which can be given effect without invalid provision or application, and to this end the provisions of this ordinance are severable. The Board hereby declares that it would have adopted this ordinance irrespective of the invalidity of any particular portion thereof.

Section 15. Effective Date

This Ordinance shall become effective immediately upon adoption.

ATTACHMENT B

Errata Sheet for Corrections to the Santa Clarita Valley Water Agency Water Conservation and Water Shortage Ordinance

The errata sheet logs content and errors that were identified during the public review period of the Santa Clarita Valley Water Agency Water Conservation and Water Shortage Ordinance.

The corrections/edits will be incorporated into the Final Water Conservation and Water Shortage Ordinance prior to adoption and attachment to the Water Shortage Contingency Plan.

Item	Page Number(s)	Paragraph Number	Previous Text	Edited Text
1	1	6	(SB 634, Chapter 833 2017 Section 17.	(SB 634, Chapter 833 2017 Section 17).
2	4	1	and regulator conditions.	and regulatory conditions.
3	8	Additional Measures	Sub-sections g, h, i	Sub-sections i, j, k
4	12,13	4, 1	None	c. Alternative Performance Compliance Waiver Customers with more than ten (10) active master-controlled smart weather-based irrigation controllers may qualify for the Alternative Performance Compliance Waiver. An Alternative Performance Compliance Waiver would relieve qualifying and approved customers from having to comply with the Limits on Watering Days, Limits on Watering Times (Duration), and Irrigation Watering Times (Time of Day) in Water Shortage Stages 2-5. In order to qualify, customers with more than ten (10) active master-controlled smart weather-based irrigation controllers must agree to reduce their water use by the water use reduction goal percentage in each declared Stage of Water Shortage. Failure to comply with the applicable water use reduction goal percentage in the applicable declared Stage of Water Shortage will result in expiration of the waiver and such violations will be punishable as described in this Ordinance.
5	12, 13	3, 1, 2, 3	Sub-sections c, d, d, e	Sub-section c, d, e, f

[This page intentionally left blank.]