Groundwater Management Plan # Santa Clara River Valley Groundwater Basin, East Subbasin Los Angeles County, California December, 2003 # Table of Contents | | Page | |------|---| | I. | Introduction | | | Castaic Lake Water Agency | | | Santa Clara River Valley Groundwater Basin, East Subbasin | | | Overview of Water Requirements and Supplies | | | Water Code Section 10753 | | II. | Management Objectives (Goals) for the Basin | | III. | Groundwater Basin Conditions | | | Occurrence of Groundwater | | | Historical Groundwater Development | | | Groundwater Monitoring Network and Program | | | Groundwater Levels and Storage | | | Groundwater Quality | | | Areas of Concern and Identified Problems | | IV. | Historical and Projected Water Requirements and Supplies | | | Historical Water Requirements | | | Projected Water Requirements | | | Existing and Projected Water Supplies | | V. | Elements of the Groundwater Management Plan24 | | | Primary Element 1 - Monitoring of Groundwater Levels, Quality, | | | Production, and Subsidence | | | Primary Element 2 - Monitoring and Management of Surface Water | | | Flows and Quality27 | | | Primary Element 3 - Determination of Basin Yield and | | | Avoidance of Overdraft | | | Primary Element 4 - Development of Regular and Dry Year/Emergency | | | Water Supply | | | Primary Element 5 - Continuation of Conjunctive Use Operations 30 | | | Primary Element 6 - Long Term Salinity Management | | | Primary Element 7 - Integration of Recycled Water | # Table of Contents, cont. | Page | |--| | Primary Element 8 - Identification and Mitigation of Soil and | | Groundwater Contamination | | Primary Element 9 - Development and Continuation of Local, State | | and Federal Agency Relationships | | Primary Element 10 - Groundwater Management Reports | | Secondary Element 1 - Continuation of Public Education and | | Water Conservation Programs | | Secondary Element 2 - Identification and Management of Recharge Areas | | and Wellhead Protection Areas39 | | Secondary Element 3 - Identification of Well Construction, Abandonment | | and Destruction Policies | | Secondary Element 4 - Provisions to Update the | | Groundwater Management Plan | | | | nces | #### VI. References ### Appendices - I. Groundwater and Surface Water Monitoring Protocols - II. Comments and Responses (separately bound) # Figures and Tables | | Afer Page | |--------|--| | Figure | S | | 1-1 | CLWA and Purveyors' Service Areas | | 1-2 | Santa Clara River Valley East Ground-Water Subbasin | | 3-1 | Alluvial and Saugus Formations | | 3-2 | Historical Groundwater Elevations | | 3-3 | Historical Groundwater Quality | | 4-1 | Historical Groundwater Production | | 4-2 | Historical and Projected Water Use | | 5-1 | Water Level Monitoring Well Network | | 5-2 | Water Quality Monitoring Network | | 5-3 | Average of Daily Mean Streamflow over the Water Year | | 5-4 | Historical and Projected Water Use | | Tables | Page | | 4-1 | Projected Normal/Average Year Water Demands | #### I. Introduction #### Castaic Lake Water Agency Castaic Lake Water Agency (CLWA) was formed in 1962 as a State Water Project Contractor to provide wholesale water supply from the State Water Project (SWP) to retail water purveyors in the Upper Santa Clara River area, most notably to Newhall County Water District, Los Angeles County Waterworks District No. 36, Santa Clarita Water Company and Valencia Water Company. In 2001, as part of legislation authorizing CLWA to provide retail water service to individual municipal customers in addition to its ongoing wholesale water supply, Assembly Bill 134 included a requirement that CLWA prepare a groundwater management plan in accordance with the provisions of Water Code Section 10750 et seq., which was originally enacted by, and is commonly known as, Assembly Bill 3030. This groundwater management plan has been prepared to satisfy the requirements of AB 134 and to both complement and formalize a number of existing water supply and water resource planning and management activities in the CLWA service area. The CLWA service area encompasses all of the existing and currently planned municipal water service areas of the Upper Santa Clara River area, i.e. the suburban areas generally proximate to the Santa Clara River in Los Angeles County, generally between hills of the San Gabriel Mountains and the Santa Susana Mountains on the north and south, and between the Los Angeles/Ventura County line and Lang Station on the west and east, respectively. The extent of the CLWA service area and the geographical locations of the individual water purveyors within the CLWA service area are illustrated in Figure 1-1. #### Santa Clara River Valley Groundwater Basin, East Subbasin The groundwater basin generally beneath the CLWA service area, identified in DWR Bulletin 118 as the Santa Clara River Valley Groundwater Basin, East Subbasin (Basin No. 4-4.07), is comprised of two aquifer systems, the Alluvium generally underlying the Santa Clara River and its several tributaries, and the Saugus Formation which underlies much of the entire Upper Santa Clara River area. The mapped extent of the Santa Clara River Valley East Subbasin in Bulletin 118, which is approximately the outer extent of the Alluvium and the Saugus Formation, and its Figure 1-1 CLWA and Purveyors' Service Areas CONSULTING ENGINEERS relationship to the extent of the CLWA service area are illustrated in Figure 1-2. The two aquifer systems that comprise the groundwater basin are described in detail in this plan. For purposes of this plan, the groundwater basin is encompassed by the CLWA service area, and CLWA is the logical public water supply agency to prepare and implement a groundwater management plan for the Santa Clara River Valley East groundwater subbasin. #### Overview of Water Requirements and Supplies Historically, while development of local water supplies dates back at least 100 years, the earliest complete records of water use in the basin date from the late 1940's, when practically all water demand was for agricultural use. From that time through the early 1960's, agricultural water use, which was solely supplied by local groundwater, ranged from about 27,000 to about 42,000 acrefeet per year (afy). Over the succeeding three decades, agricultural water use progressively declined, into the range of about 8,000 to 10,000 afy, followed by a slight increase into the range of about 12,000 to 15,000 afy over the last ten years. Current projections are for agricultural water use to substantially decline, to about 7,000 afy, over the next 20 years. Significant municipal water use in the basin did not begin until the early 1960's, when municipal uses, which were met exclusively at that time by local groundwater, were in the range of about 5,000 to 10,000 afy. By 1980, when supplemental surface water from the State Water Project (SWP) began to be imported to the basin, municipal water demands had increased to about 22,000 afy. Since then, municipal water demands have further increased, to their current level of about 61,000 afy, about 60 percent of which is supplied by SWP water, with the balance supplied by local groundwater. Current projections are for municipal water requirements to increase to about 106,000 afy over the next 20 years. Historical and projected water requirements and supplies in the basin are discussed in more detail in Section IV of this Plan. #### Water Code Section 10750 et. seq. In 1992, the California State Legislature adopted Assembly Bill 3030 (AB 3030); that legislation was subsequently incorporated into the Water Code, Section 10750 et seq., to encourage local public agencies/water purveyors to adopt a formal plan to manage groundwater resources within East Groundwater Subbasin Santa Clara River Valley their jurisdictions. Within the scope of Water Code Section 10753.8, a local groundwater management plan can potentially include up to twelve specific components. Although the plan need not be restricted to those specific components, the listed components are quite broad and cover essentially all of the groundwater management elements which are part of this plan or are likely to be considered for implementation into this plan in the foreseeable future. To a considerable extent, a number of the groundwater management activities listed in Water Code Section 10753.8 have been implemented in the Santa Clara River Valley East groundwater subbasin as part of an organized effort by the local municipal water purveyors, including CLWA, to manage the groundwater basin within its sustainable yield for the benefit of local water supply, and also to integrate management of the basin with the management of surface and groundwater immediately downstream on the Santa Clara River, in this case specifically with United Water Conservation District in Ventura County, as discussed in more detail herein. The potential components of a groundwater management plan listed in Water Code Section 10753.8 include: - the control of saline water intrusion. - identification and management of wellhead protection areas and recharge areas. - regulation of the migration of contaminated groundwater. - the administration of a well abandonment and well destruction program. - mitigation of conditions of overdraft. - replacement of groundwater extracted by water producers. - monitoring of groundwater levels and storage. - facilitating conjunctive use operations. - identification of well construction policies. - the construction and operation by the local agency of groundwater contamination cleanup, recharge, storage, conservation, water recycling, and extraction projects. - the development of relationships with state and federal regulatory agencies. - the review of land use plans and coordination with land
use planning agencies to assess activities which create a reasonable risk of groundwater contamination. In 2002, the Legislature adopted Senate Bill 1938 (SB 1938) to amend and add to Water Code Section 10750 et seq. regarding the implementation of local groundwater management plans. While the provisions of SB 1938 did not alter the potential components of a local groundwater management plan, as listed above, it did add the following notable provisions: - The local agency, in preparing a groundwater management plan, shall make available to the public a written statement describing how interested parties may participate in developing the plan; for purposes of carrying out the preceding requirement, the local agency may appoint, and consult with, a technical advisory committee consisting of interested parties. AB 134 actually anticipated this last item by requiring CLWA to form an Advisory Committee to review its Plan. The membership of the Advisory Committee was specified to consist of one representative from each retail water purveyor within CLWA and one representative from each groundwater producer within CLWA who pumped more than 100 acre-feet in the preceding water year (2000). In conformance with that requirement, CLWA formed an Advisory Committee consisting of representatives from the following organizations, who collectively fulfill the description of the membership specified in AB134: - CLWA Santa Clarita Water Division - Los Angeles County Sheriff's Department - Los Angeles County Waterworks District No. 36 - Newhall County Water District - Newhall Land and Farming Company - Robinson Ranch - Valencia Water Company - In order to qualify for funding assistance for groundwater projects or groundwater quality projects, for funds administered by DWR, a local agency must accomplish all the following relative to groundwater management: - prepare and implement, or participate in, or consent to be subject to, a groundwater management plan, a basin-wide management plan, or other integrated regional water management program or plan that meets the provisions listed below. - include groundwater management components that address monitoring and management of water levels, groundwater quality degradation, inelastic land subsidence, and changes in surface flows and quality that either affect groundwater or are affected by groundwater pumping. - include provisions to cooperatively work with other public (and presumably private) entities whose service area or boundary overlies the groundwater basin. - include mapping of the groundwater basin, as defined in DWR's Bulletin 118, and the boundaries of the local agency subject to the plan, plus the boundaries of other local agencies that overlie the basin. - adopt monitoring protocols designed to detect changes in groundwater levels, groundwater quality, inelastic land subsidence (for basins where subsidence has been identified as a potential problem), and flow and quality of surface water that either directly affect groundwater, or are directly affected by groundwater pumping. Of the potential groundwater management activities listed in Water Code Section 10753.8, those already being investigated and actively implemented as part of less formal groundwater management by the purveyors include avoidance of overdraft, implementation of conjunctive use, monitoring of groundwater levels and quality, initiation of groundwater contamination control, analysis of basin yield for ongoing avoidance of overdraft, and annual analysis and reporting on basin conditions. The historic focus of informal groundwater management in the Santa Clara River Valley East groundwater subbasin has been on water supply, quantity and quality, to avoid conditions of overdraft, primarily by augmenting local groundwater supplies with a supplemental, imported surface water supply from the State Water Project. More recently, efforts have been added to include ongoing monitoring and the compilation of data into a data management system that is integrated with a comparable database system for the downstream surface water resources and groundwater basins on the Santa Clara River. Recent efforts have also included initiation of a process to develop a numerical groundwater flow model of the basin for analysis of basin response to various water supply, recharge, and conjunctive use management alternatives that might be applicable for the basin. The potential groundwater management provisions not historically implemented have been those more focused on groundwater contamination; however, very recent activities have added this component to local groundwater management as a result of impacts on several municipal water supply wells from a former munitions manufacturing site in the basin, as discussed in more detail herein. In summary, in many respects, the local municipal water purveyors, including CLWA, have already begun developing and implementing important parts of a formal local groundwater management program as part of developing reliable water supplies for in-basin needs. To ensure the reliability of the groundwater component of water supplies to meet existing and projected demands, those parts of local groundwater management planning already include monitoring, formulation of a data base, and integration with the database for adjoining downstream basins, analysis of groundwater conditions and annual reporting on water conditions in the basin, initiation of groundwater flow modeling, ongoing conjunctive use of local groundwater and imported SWP supplies, and initiation of investigation and control of localized groundwater contamination. The groundwater management plan described herein can be envisioned as a formalization, and some expansion, of those ongoing management efforts in the Santa Clara River Valley East groundwater subbasin. The balance of this plan is organized to first establish a set of management objectives, or goals, for the basin; to then describe existing groundwater basin conditions, including areas of concern and identified problems; to present historical and projected water demands in the basin; and to finally present a set of groundwater management actions which, in aggregate, are the elements of this groundwater management plan. ### II. Management Objectives (Goals) for the Basin Prior to 1980, all water supplies in the Upper Santa Clara River Area were developed from local groundwater. Since 1980, the major water purveyors within the CLWA service area have developed their water supplies from a combination of local groundwater and imported supplemental surface water from the State Water Project (SWP). CLWA is the state SWP Contractor which holds the contract for SWP water. CLWA also operates the treatment and distribution system for delivery of SWP water to the local purveyors. Some imported SWP water has historically been delivered for non-municipal uses although, in aggregate, total non-municipal uses have been almost negligible (less than one percent). A relatively small fraction of water supply in the area is still devoted to agricultural and other irrigation, and essentially all of that remains developed from groundwater. Over the last two decades, that use has been in a range between about 10,000 and 17,000 acre-feet per year. The development and importation of a supplemental surface water supply from the State Water Project represents the first of a number of water resource and water supply management actions, all of which are formalized in this plan, aimed at what can be considered to be the overall goals or objectives for the basin. In no priority, those management objectives for the basin can be expressed as follows: - Development of an integrated surface water, groundwater, and recycled water supply to meet existing and projected demands for municipal, agricultural, and other water supply; since pumpage for other uses is from the same aquifer system, this objective includes agricultural, small community, non-agricultural irrigation, and individual domestic uses. - 2. Assessment of groundwater basin conditions to determine a range of operational yield values that will make use of local groundwater conjunctively with SWP and recycled water to avoid groundwater overdraft and the undesirable effects associated with it. In effect, this objective equates to more detailed quantification of the yield of the basin in order to continue to avoid overdraft, consistent with what has historically been the case in the basin. In addition to avoiding the traditional overdraft symptoms and effects, e.g. chronic water level decline, loss of groundwater storage, onset of land subsidence, groundwater quality degradation, a corresponding basin objective is to manage groundwater levels and associated groundwater discharge to the Santa Clara River at the west end of the basin, and thus not adversely impact surface and groundwater discharges to the downstream basin(s). - 3. Preservation of groundwater quality for beneficial use in the basin, and for beneficial use of surface water and groundwater discharges from the basin. Included in this management goal will be the active characterization and solution of any groundwater contamination problems, through cooperation with responsible parties or through independent action if timely action by responsible parties is not forthcoming and the preceding management objectives are thereby impacted or constrained. - 4. Preservation of interrelated surface water resources. Included in this management goal will be the maintenance of appropriate surface water flows and non-degradation of surface water quality as a result of managing groundwater conditions to meet the other management goals for the basin. Quantitatively, the preceding goals translate into general preservation of groundwater levels and quality in the Alluvial aquifer system consistent with the last 30 years, including fluctuations through seasonal demands and local hydrologic variations (wet and dry
periods). As discussed in more detail in the next chapter, the hydrogeologic setting in the area has resulted in smaller Alluvial groundwater level fluctuations toward the western half of the basin (generally west of Bouquet Canyon), and larger fluctuations to the east. However, largely due in part to the importation of supplemental surface water over the last 20 years, and the integrated or conjunctive use of that supplemental water with local groundwater, there has been no chronic decline in groundwater levels or storage. A continuation of such basin conditions, possibly complemented by management actions to decrease the historical water level fluctuations in the eastern part of the basin, will accomplish the second basin objective (continued avoidance of overdraft as has been the ongoing historical condition in the basin) while continuing to utilize local groundwater to meet part of projected water requirements. Corresponding management actions to sustain recharge and not overdraft groundwater storage will accomplish the third basin objective by replenishing the aquifer system with sufficient water to sustain what has been generally consistent quality of groundwater on a long-term basis. In general, the same goals of preservation of groundwater levels and quality pertain to the Saugus Formation as well as to the Alluvium. However, while those goals are generally expected to equate to Alluvial pumping rates comparable to recent historical pumping, the Saugus Formation may be intermittently utilized at higher than historical pumping rates for dry-period and/or emergency water supply. Interpretation of historical pumping fluctuations and corresponding aquifer response suggests that such intermittent utilization of a small fraction of the Saugus' large storage capacity can successfully contribute to a firming of local water supplies while still accomplishing all the management objectives listed above, primarily via reduction in Saugus pumping during wet-normal conditions, possibly complemented by management actions to accelerate recharge of the Saugus. ### III. Groundwater Basin Conditions #### Occurrence of Groundwater Groundwater in the Santa Clara River Valley East groundwater subbasin occurs in two aquifer systems, the Alluvium associated with the Santa Clara River and its tributaries, and the Saugus Formation. There are also some scattered outcrops of Terrace deposits in the basin that likely have the capacity to contain limited amounts of groundwater; however, since these deposits are located in limited areas that are situated at elevations above the regional water table and are also of limited thickness, they are of no practical significance as aquifers and have consequently not been developed for water supply. The Alluvial aquifer system, of Quaternary to Holocene (Recent) geologic age, consists primarily of stream channel and flood plain deposits of the Santa Clara River and its tributaries. The Alluvium is deepest along the center of the present river channel, with a maximum thickness of about 200 feet near the area known as Saugus. It thins toward the flanks of the adjoining hills and toward the eastern and western boundaries of the basin and, in the tributaries, becomes a mere veneer in their upper reaches. The spatial extent of the Alluvium throughout the basin is illustrated in Figure 3-1. The Alluvium is the most permeable of the local aquifer units. Based on well yields and aquifer testing, transmissivity values in the range of 50,000 to 500,000 gallons per day per foot (gpd/ft) have been reported for the Alluvium, with the higher values where the Alluvium is thickest in the center of the valley and generally west of Bouquet Canyon (Slade 1986 and 2002). The amount of groundwater in storage can vary considerably because of the effects of recharge, discharge and pumping from the aquifer. The maximum storage capacity of the Alluvium has been estimated to be about 240,000 acre-feet (af) (Slade, 1986 and 2002). The Saugus Formation, of Pliocene to Pleistocene geologic age, has traditionally been divided into two stratigraphic units: the lowermost, geologically older Sunshine Ranch member, which is of mixed marine to terrestrial (non-marine) origin; and the overlying, or upper, portion of the Formation which is entirely terrestrial in origin. The Sunshine Ranch Member of the Saugus Formation has a maximum thickness of about 3,000 to 3,500 feet in the central part of the valley; ### III. Groundwater Basin Conditions #### Occurrence of Groundwater Groundwater in the Santa Clara River Valley East groundwater subbasin occurs in two aquifer systems, the Alluvium associated with the Santa Clara River and its tributaries, and the Saugus Formation. There are also some scattered outcrops of Terrace deposits in the basin that likely have the capacity to contain limited amounts of groundwater; however, since these deposits are located in limited areas that are situated at elevations above the regional water table and are also of limited thickness, they are of no practical significance as aquifers and have consequently not been developed for water supply. The Alluvial aquifer system, of Quaternary to Holocene (Recent) geologic age, consists primarily of stream channel and flood plain deposits of the Santa Clara River and its tributaries. The Alluvium is deepest along the center of the present river channel, with a maximum thickness of about 200 feet near the area known as Saugus. It thins toward the flanks of the adjoining hills and toward the eastern and western boundaries of the basin and, in the tributaries, becomes a mere veneer in their upper reaches. The spatial extent of the Alluvium throughout the basin is illustrated in Figure 3-1. The Alluvium is the most permeable of the local aquifer units. Based on well yields and aquifer testing, transmissivity values in the range of 50,000 to 500,000 gallons per day per foot (gpd/ft) have been reported for the Alluvium, with the higher values where the Alluvium is thickest in the center of the valley and generally west of Bouquet Canyon (Slade 1986 and 2002). The amount of groundwater in storage can vary considerably because of the effects of recharge, discharge and pumping from the aquifer. The maximum storage capacity of the Alluvium has been estimated to be about 240,000 acre-feet (af) (Slade, 1986 and 2002). The Saugus Formation, of Pliocene to Pleistocene geologic age, has traditionally been divided into two stratigraphic units: the lowermost, geologically older Sunshine Ranch member, which is of mixed marine to terrestrial (non-marine) origin; and the overlying, or upper, portion of the Formation which is entirely terrestrial in origin. The Sunshine Ranch Member of the Saugus Formation has a maximum thickness of about 3,000 to 3,500 feet in the central part of the valley; however, due to its marine origin and fine-grained nature, it is not considered to be a viable source of groundwater for municipal or other comparable supply. Above the Sunshine Ranch Member, the Saugus Formation is coarser grained, consisting mainly of lenticular beds of sandstone and conglomerate that are interbedded with lesser amounts of sandy mudstone, which were deposited in stream channels, flood plains, and alluvial fans by one or more ancestral drainage systems in the valley. The sand and gravel units that represent aquifer materials in the upper part of the Saugus Formation are generally located between depths of about 300 and 2,500 feet. The spatial extent of the Saugus Formation throughout the basin is illustrated in Figure 3-1. While much thicker and more spatially extensive throughout the basin when compared to the Alluvium, and while significant in terms of groundwater storage and individual well capacity, the Saugus Formation has typically lower values of transmissivity, in the range of 80,000 to 160,000 gpd/ft, with the higher values in the upper portions of the Formation (Slade, 1988 and 2002). The storage capacity of the Saugus has most recently been estimated to be 1.65 million acre-feet between depths of 300 feet and 2,500 feet (or the base of the Saugus or the base of fresh water if shallower than 2,500 ft.) (Slade, 2002). #### **Historical Groundwater Development** Of the two aquifer systems in the basin, the predominant development of groundwater for agricultural and municipal water supply has historically been from the Alluvium, a condition that remains the case at present. Prior to 1980, all water supply in the valley was developed from local groundwater; since 1980, local groundwater has been supplemented by imported surface water from the State Water Project. Details of historical water requirements, and water supplies to meet those requirements, are discussed and illustrated in Chapter IV of this Plan. In general, over the last two decades, since the inception of SWP deliveries in 1980, total pumpage from the Alluvium has ranged from a low of about 20,000 afy (in 1983) to slightly more than 43,000 afy (in 1999). For comparison, agricultural pumpage from the Alluvium throughout the 1950's was consistently in the range of about 33,000 to 41,000 afy. During that same time, municipal pumpage was quite small, less than 4,000 afy. Overall, over the last two decades, there has been a change in municipal/agricultural pumping distribution, toward a slightly higher fraction for municipal water supply (from about 50% to nearly 60% of alluvial pumpage) which is indicative of the general land use changes in the area. Alluvial and Saugus Formations Santa Clara River Valley East Groundwater Subbasin Since 1980, total pumpage from the Saugus Formation has ranged between about 3,850 afy and nearly 15,000 afy; average pumpage over that period has been about 6,900 afy. The great majority of pumpage from the Saugus is for municipal supply (nearly 6,300 afy, or 92 percent, on average). For comparison, although historical Saugus pumping records prior to 1980 are limited, there
appears to have been essentially no pumping from the Saugus prior to 1960 (on the order of about 100 af in most years, beginning in 1948), and some increased pumping for agricultural water supply beginning in about 1962 (about 900 af). The largest amount of agricultural pumping from the Saugus was during the mid-1960's, when annual Saugus pumpage was about 3,000 af. Agricultural pumping from the Saugus declined to near zero by the late 1970's, but has been generally in the 500 to 1,000 afy range since 1982. There was no Saugus pumpage for municipal supply in the early 1960's; limited data suggests that municipal pumping from the Saugus began in the 1970's, and reached nearly 5,000 afy by 1980-81. The most significant period of Saugus pumpage was 1991 through 1994, when pumpage ranged from 10,600 afy to nearly 15,000 afy and averaged over 12,000 afy, during which time SWP water deliveries were reduced at the end of extended drought conditions. #### **Groundwater Monitoring Network and Program** There is no formal groundwater monitoring network of wells for groundwater level measurements and/or groundwater quality sampling in the basin. Consequently, one component of this Plan is to formalize both a network of wells for groundwater monitoring and a program for water level measurements, water quality sampling, and other pertinent groundwater data collection (Primary Plan Element 1). Despite the lack of an existing formal groundwater monitoring network and program, however, there is a significant amount of historical groundwater data, some of which dates back into the 1940's, on which to base reasonable assessments of groundwater conditions in the basin. For example, groundwater level measurements have been made over varying periods of record in a total of 154 wells, mostly alluvial wells, throughout the basin. Similarly, groundwater quality data, consisting of varying numbers of constituents analyzed, are available from some wells, but a much smaller number than is the case for groundwater level data. These data, along with direct measurements or indirect estimates of pumpage, primarily from high capacity municipal and agricultural wells, allow for analysis of groundwater basin conditions, as discussed in this Plan, and also provide the bases on which a groundwater model can be developed (Primary Plan Element 3) and on which various management criteria such as operational yield, baseline groundwater quality, etc. can be determined (Primary Plan Elements 3, 6, etc.). #### **Groundwater Levels and Storage** Groundwater level data in various parts of the basin illustrate basin response to the historical pumpage from the Alluvium. Organized into hydrograph form (depth to groundwater or groundwater elevation vs. time), historical groundwater levels were lower in the 1950's and 60's than current levels in the middle to western part of the basin, logically in response to the higher pumpage of the 1950's before the importation of SWP water and the associated increase in return flows to the river that have augmented groundwater recharge in that part of the basin. Groundwater levels in those areas notably recovered as pumpage declined through the 1960's and 1970's. They have subsequently sustained generally high levels for much of the last 30 years, with two dry-period exceptions: mid-1970's and late 1980's - early 1990's; recoveries to previous high groundwater levels have followed both of those dry-period declines. Based on this data, there is no evidence of any historic or recent trend toward permanent water level or storage decline. In general, throughout the Alluvium, groundwater levels have been generally higher over the last 30 years than was consistently the case for the preceding 20 years (1950's - 60's). During the last 20 to 30 years, in essentially all the alluvial portions of the basin, groundwater levels have fluctuated from near the ground surface when the basin is full, to as much as 100 feet lower during intermittent dry periods of reduced recharge. Selected hydrographs of groundwater elevations illustrate the above described conditions throughout the basin. Figure 3-2 illustrates groundwater level conditions and trends at multiple locations in the Alluvium along the main channel of the Santa Clara River, from east near the mouth of Sand Canyon, to the area between Mint Canyon and Bouquet Canyon, to farther west immediately below the mouth of Bouquet Canyon. Similar long-term conditions are evident in the tributary canyons. A comment about some of the groundwater fluctuations illustrated in Figure 3-2 is appropriate since they are illustrative of the most substantial intermittent changes in the basin. As noted above, the Alluvium has historically experienced a number of alternating wet and dry hydrologic conditions as illustrated in Figure 3-2. Since the Alluvium is thinner to the east, the fluctuations in water levels of 75 to 100 feet impact well yields and pumping capacities when water levels are occasionally lower. When that occurs, as is currently the case due to locally dry hydrologic conditions, the affected purveyors shift a portion of their water demands to imported SWP water, thus reducing pumpage and reducing drawdown of water levels. Recovery of groundwater levels Santa Clara River Valley East Groundwater Subbasin Historical Groundwater Elevations ENGINEERS and storage occurs upon a return of stream flow to contribute to natural recharge. Depending on the period of available data, all the hydrographs of alluvial groundwater levels show the same general picture: recent (last 30 years) groundwater levels are generally higher than over the preceding 20 years. In some locations, there are intermittent dry-period declines (and an associated use of some groundwater from storage) followed by wet-period recoveries (and associated refilling of storage space). On a long-term basis, whether over the last 20 years since the inception of conjunctive use via importation of SWP water, or over the last 40 to 50 years, the Alluvium shows no signs of water level-related overdraft, i.e., no trend toward decreasing groundwater levels and storage, a condition that is intended to be maintained via implementation of this Plan, e.g. via Primary Plan Elements 3 and 5. Unlike the Alluvium, there are limited Saugus water level data; however, the limited data indicate that, although there have been seasonal water level changes in response to pumpage, the long-term trend in the Saugus (over the last 35 to 40 years) has been one of relative groundwater level stability (see, for example, Figure 3-2). There is no trend toward a sustained decline in Saugus water levels or storage that would be indicative of overdraft. Land subsidence as a result of groundwater extractions is a concern in a number of groundwater basins in California. The potential for land subsidence caused by groundwater extractions derives from a combination of the geologic makeup of the aquifer materials and the history of groundwater level fluctuations. In the Santa Clara Valley East Subbasin, the most notable groundwater level fluctuations have occurred in the Alluvium to the east of Bouquet Canyon, with the greatest fluctuations (up to nearly 100 feet) recorded in the vicinity of Sand Canyon. Fortunately, those fluctuations have been intermittent, and have varied directly with local wet and dry conditions. From a subsidence perspective, they have also fluctuated in an unconfined aquifer that is comprised of essentially all coarse-grained material. The lack of any significant fine-grained material in the aquifer where groundwater levels have fluctuated results in two notable local conditions in regards to subsidence: there is no recorded historical subsidence or indirect evidence of its occurrence, i.e. subsidence-related impacts on surface structures, drainage facilities, etc.; and there is minimal potential for inelastic subsidence to occur in response to ongoing groundwater level fluctuations in the Alluvium. The Saugus Formation contains a greater fraction of fine-grained material interbedded with the coarser aquifer materials that yield water to wells. Consequently, the Saugus has a greater potential to undergo consolidation, with attenuant subsidence impacts at the ground surface, if groundwater levels are substantially lowered for long time periods. Historical Saugus pumping has not caused such conditions to occur. Current water supply planning, as described in this Plan, is to rely on the Saugus Formation for a relatively small component of water supply on an ongoing basis, with intermittent increased pumping during dry periods. The long-term objective for groundwater management, as described in this Plan, is to not overdraft either the Alluvium or the Saugus, i.e. to not chronically lower groundwater levels. Satisfaction of the latter objective will have the correlative impact of minimizing the potential for inelastic land subsidence attributable to pumping from the Saugus Formation; combined with the lack of fine-grained material in the Alluvium, satisfaction of that objective will also have the correlative impact of ensuring the improbability of any subsidence attributable to pumping from that aquifer. #### **Groundwater Quality** Groundwater quality is, or course, a key factor in assessing both the Alluvial aquifer and the Saugus Formation as municipal and agricultural water supplies. At present, however, there is no convenient long-term record of water quality, i.e. water quality data in one or more wells that span several decades and continue to the present. Thus, in order to examine a long-term record of water quality in the Alluvium, an integration of individual records from several wells, completed in the same aquifer materials and in close proximity to each other, can be used to generally show long-term trends in groundwater quality. Figure 3-3 illustrates groundwater quality conditions and trends at multiple locations in the Alluvium
along the main channel of the Santa Clara River from the area near the mouth of Mint Canyon, to areas immediately above and near the mouth of Bouquet Canyon, to the area below San Francisquito Canyon. Based on these records of groundwater quality, there have been historical fluctuations in concentrations of total dissolved solids (TDS), as well as corresponding fluctuations of individual constituents of TDS. In general, however, and similar to groundwater levels, there has been no long-term trend toward groundwater quality degradation. Groundwater quality variations are common throughout the Alluvium and generally correlate inversely with precipitation and stream flow: wet periods have produced substantial recharge of higher quality (low TDS) water and dry periods have resulted in the notable declines in water levels described above, with a corresponding increase in TDS (and individual component Santa Clara River Valley East Groundwater Subbasin Historical Groundwater Quality by Section ENGINEERS constituents) in the deeper parts of the Alluvium. Due to a much more limited number of wells and the limited spatial extent of groundwater development in the Saugus Formation, long-term Saugus groundwater quality data are not sufficiently extensive to permit any sort of basin-wide analysis or assessment of pumping-related impacts on quality. Based on the most complete historical record, over the last 35 years, however, groundwater quality in the Saugus has remained generally constant. The Saugus Formation is, on a groundwater quality basis, a viable agricultural and municipal water supply. The most notable groundwater quality issue in the basin centers around the detection and impact of perchlorate on several Saugus wells and one Alluvial well in the central part of the basin near the location of the former Whittaker Bermite facility, which is immediately southeast of the confluence of the main Santa Clara River and its South Fork tributary. In 1997, routine water quality sampling detected the presence of perchlorate in four municipal wells completed in the Saugus Formation (CLWA Santa Clarita Water Division Saugus Wells 1 and 2, Newhall County Water District Well 11, and Valencia Water Company Well 157). While there remains no primary or secondary drinking water standard for perchlorate, and although only some of the detected concentrations of perchlorate in the Saugus wells exceeded the Action Level established by the State Department of Health Services at that time (18 ug/l), all those wells were inactivated by their respective owners after detection of perchlorate; those wells remain out of municipal water supply service since then. More recently, in late 2002, routine water quality sampling of Alluvial wells detected perchlorate in one of them (CLWA Santa Clarita Water Division Stadium Well) at a concentration which slightly exceeds the current Action Level (4 ug/l). This well has also been voluntarily inactivated, and remains removed from municipal water supply service. This Plan, notably through Primary Plan Elements 1, 6 and 8, is intended to incorporate both short-term and long-term groundwater quality considerations in the management of the groundwater basin in order to formalize groundwater quality monitoring and assessment, to investigate and correct groundwater contamination problems, and to preserve or improve groundwater quality for ongoing water supply as well as for avoiding adverse water quality impacts on interconnected surface waters. #### Areas of Concern and Identified Problems A number of concerns have been expressed about groundwater conditions in the basin. While not all of the expressed concerns have been substantiated, they are listed and briefly discussed here, and they are addressed in the management objectives for the basin, intended to be achieved via implementation of the various primary and secondary elements in this Plan. At present, the most notable concern in the basin is the impact of perchlorate contamination on a number of municipal water supply wells, thus affecting the available pumping capacity from some municipal wells. While perchlorate impacts on a few wells do not preclude the ability to pump groundwater in accordance with existing water supply plans, activities to characterize the contamination, and ultimately to control it and treat it, have been initiated in order to return the impacted wells' pumping capacity to water supply service. Primary Element 8 is included in this Plan to formalize the addressing of groundwater contamination issues in the basin. Concern has also been expressed that groundwater development in the basin will adversely impact the quantity and/or quality of surface flows leaving the basin via the Santa Clara River. Such concern extends to the potential impact on groundwater in the next downstream basin, the Piru Basin in Ventura County. While there are no established provisions regarding surface flows out of the Santa Clara River Valley East subbasin, Primary Element 2 is included in this Plan to formally address the monitoring and management of surface water flows and quality within, and flowing out of, the basin. Some work is already ongoing related to this area of concern via a Memorandum of Understanding (MOU) among CLWA, other retail water purveyors within CLWA's service area, and United Water Conservation District, which manages surface water and groundwater in the downstream basins on the Santa Clara River in Ventura County. That cooperative effort, which is incorporated into this Plan via Primary Element 9, includes integration of databases, development of a numerical groundwater flow model, and interpretation and reporting on surface water and groundwater conditions. A third expressed concern in the basin, is that groundwater is already overdrafted. Associated with that expressed concern is a related issue that reliance on overdrafted groundwater results in an overstated water supply in the basin. As discussed earlier in this section, long-term groundwater levels, storage, and quality all indicate the basin is in balance (i.e., no overdraft exists). As also discussed above, the importation of supplemental surface water over the last 23 years, and the associated initiation of conjunctive use operations have directly resulted in an overall adequacy of water supplies while sustaining an undepleted groundwater supply. Primary Elements 3, 4 and 5 are key parts of this Plan to more formally quantify the yield of the groundwater basin, and to continue to meet overall water requirements via continuation of conjunctive use of local groundwater with imported supplemental surface water, ultimately complemented by integration of recycled water for non-potable water supply (Primary Element 7). Finally with regard to areas of concern in the basin, the historically larger fluctuations in the eastern part of the basin have been highlighted for their impacts on private wells in that area. Some focused study has been done to address whether certain pumping directly affects private wells in Sand Canyon; its conclusions were that such direct effects were not occurring. Subsequently, a nearby development contracted for delivery of up to 120 acre-feet of imported SWP water from CLWA in order to reduce its use of groundwater for domestic and irrigation water supply. Primary Element 1 is partly intended to acquire site-specific data regarding private wells, their locations, the aquifers in which they are completed, their yields and pumping capacities as well as their quality, and their water level records. Primary Element 3 is partly intended to analyze such data in order to assess whether local aquifer depletion is occurring and, if so, what remedy is appropriate. # IV. Historical and Projected Water Requirements and Supplies #### **Historical Water Requirements** The initial development of water supplies in the Santa Clarita area began in the 1800's for irrigation on the San Francisquito Ranch after its purchase by Henry Mayo Newhall. While there are some records in the form of waterworks drawings that show early diversion and distribution facilities on the ranch in 1911 and some mapping of well locations in the 1930's, the earliest complete records of water use date from shortly after the end of World War II. From 1947 through the mid 1960's, groundwater pumping for agriculture ranged from about 27,000 to about 42,000 acre-feet per year (afy). For most of the same period, until 1960, there are no detailed records of water use for municipal supply. The first records of municipal water use begin in 1960, when municipal water requirements were about 5,000 afy; by the mid-1960's, municipal water requirements had increased to about 10,000 afy. Throughout that time, all municipal water supply was from local groundwater. From the mid-1960's through about 1980, groundwater pumping for agricultural water supply declined into the range of about 10,000 to 15,000 afy. In the late 1980's through the early 1990's, agricultural groundwater pumping further declined into the range of about 8,000 to 10,000 afy; over about the last ten years, agricultural water requirements, which continue to be fully met by local groundwater pumping, have been in the range of about 12,000 to 15,000 afy. The history and trends of agricultural water use in the basin are illustrated in Figure 4-1. Detailed records of municipal water use are not available from the mid-1960's through 1980, when imported surface water was first used in the basin for municipal water supply. However, the available municipal water use data at the beginning and at the end of that period, combined with estimated declining agricultural water use for the same period, suggest there was a generally steady increase in municipal water use from about 11,000 af in 1966 to about 22,000 af in 1980. Since then, municipal water use has increased to about 68,000 afy. With the addition of imported surface water from the State Water
Project beginning in 1980, however, groundwater pumping for municipal supply declined in the early 1980's. Throughout the 1990's, municipal pumping fluctuated between about 27,000 and 32,000 afy. The history and trend of municipal groundwater use in the basin are illustrated in Figure 4-1. As noted above, until 1980, all water supply in the basin was from local groundwater. Imported surface water was first available from the State Water Project (SWP) in 1980, when a total of 1,125 af were imported into the basin. Since then, importations of SWP water have increased in two separate steady trends, interrupted by a notable decrease at the end of, and following, the 1987-1992 drought period: a steady increase beginning in 1980, to about 21,600 afy in each of 1989 and 1990, followed by a substantial decrease, to less than 8,000 af in 1991, and then a steady increase back to about 21,000 afy in 1997 and 1998, followed by further increases to nearly 42,000 af in 2002. The history and trends in importation of SWP water to the basin are illustrated in Figure 4-2, which also illustrates the historical trends in groundwater pumping and total water use in the basin since the importation of SWP water. In the context of this groundwater management plan, the historical utilization of imported SWP water to augment local groundwater represents the initiation of conjunctive use of surface water and groundwater supplies, a groundwater management principle which is intended to be continued via adoption of Primary Element 5 of this plan. #### **Projected Water Requirements** Detailed projections of municipal water requirements were most recently completed as part of the Urban Water Management Plan prepared by CLWA and the municipal water purveyors (Newhall County Water District, Santa Clarita Water Company, and Valencia Water Company) in 2000. Those projections, which are forecast for a 20-year period, also recognize an ongoing but decreasing agricultural water demand over the same period, from about 15,000 afy in 2005 to about 7,000 afy by 2020. The municipal water demand projections in the Urban Water Management Plan are derived from utilization and interpretation of multiple projection methods, including per-capita water-use applied to population projections; extrapolation of number of service connections (using two different projection techniques, an average rate and an accelerated rate projection) applied to the rate of service connection additions since 1990; and land use projections combined with unit water use factors on multiple land use categories (urban, including residential, commercial, industrial and recreational; irrigated agricultural; and vacant and open space). The water demand projections in the Urban Water Management Plan also consider weather effects (variations due to hot-dry years vs. cool-wet years) and conservation Figure 4-1 2010 2000 ——— Municipal/Industrial 1990 Upper Santa Clara Valley Groundwater Basin East Subbasin 1980 - - • - - Agricultural (Estimated) Year 1970 1960 1950 1940 Production (Ac-Ft) 9,000 0,000 45,000 40,000 35,000 30,000 10,000 15,000 5,000 Historical Groundwater Production effects on water usage. The net result of application and interpretation of the various water demand projection methods in the 2000 Urban Water Management Plan is summarized in Figure 4-2, which reflects projected urban and agricultural water demand through 2020, absent potential increased conservation savings, which are estimated to be ten percent of urban water demand. Numerically, urban water use without increased conservation savings is projected to increase to nearly 67,000 afy by 2005, and then continue to increase to 106,000 afy by 2020. As noted above, agricultural water use over the same period is projected to decrease to 15,000 afy by 2005, followed by an ongoing decrease to 7,100 afy by 2020. In addition to the graphical presentation of projected water demands in the basin through 2020 in Figure 4-2, projected water demands are tabulated, both with and without potential increased conservation savings, in Table 4-1. Table 4-1 Projected Normal/Average Year Water Demands (acre-feet per year) | | 2005 | 2010 | 2015 | 2020 | |--|------------------|------------------|-----------------|------------------| | Urban
Agriculture | 66,600
15,100 | 77,700
12,400 | 90,900
9,800 | 106,000
7,100 | | Total Projected Demand | 81,700 | 90,100 | 100,700 | 113,100 | | Increased Conservation Savings | 6,600 | 7,700 | 9,100 | 10,600 | | Total Projected Demand (with increased conservation) | 75,100 | 82,400 | 91,600 | 102,500 | #### **Existing and Projected Water Supplies** As noted above, existing water supplies to meet current water demands are comprised of local groundwater and imported SWP surface water. In 2001, for example, to meet a total water demand of nearly 76,800 af, local groundwater pumping amounted to 41,400 af, (about 54% of total demand) and imported SWP water amounted to 35,400 af (about 46% of total demand). Water supplies to meet projected water demands are expected to continue to be primarily a combination of local groundwater and imported SWP surface water, augmented by local recycled water and possibly some water supply derived from water transfers and desalination outside the basin. **Local Groundwater** - Local groundwater has historically been developed from the two aquifers that comprise the groundwater basin, the Alluvium that underlies the Santa Clara River and its tributaries, and the Saugus Formation that underlies, much of the CLWA service area. Those two aquifers, and the groundwater basin they comprise, are the focus of this groundwater management plan. Based on historical experience and observation of groundwater conditions, it is currently expected that ongoing utilization of local groundwater will continue to be in amounts that are generally comparable to what has historically been pumped, 30,000 to 40,000 afy from the Alluvium and 7,500 to 15,000 afy from the Saugus Formation. It is also expected that there is some additional development potential in the Saugus Formation, in the range of 10,000 to 20,000 af which might be intermittently extracted during one or more dry years when supplemental imported water supplies might be reduced. Ultimately, it is expected that local groundwater will continue to be a component of water supply in the basin at appropriate production levels from both aquifers. The intent of this groundwater management plan is to ensure that ongoing utilization of local groundwater continues to result in acceptable aquifer conditions, i.e. avoidance of overdraft (Primary Plan Element 3), no degradation of quality (Primary Plan Element 6), no adverse impacts to surface waters (Primary Plan Element 2), all via continuation of conjunctive use operations that have been ongoing since the initial importation of supplemental surface water in 1980 (Primary Plan Element 5) and via monitoring and interpretation of surface water and groundwater conditions on an ongoing basis (Primary Plan Elements 1 and 2). Supplemental (SWP) Surface Water - CLWA has a Table A contract amount of 95,200 af of water from the SWP. CLWA's original contract, signed in 1963, was for 23,000 af; that Table A amount was later increased to 41,500 af. In 1988, CLWA purchased a Table A amount of 12,700 af from Devil's Den Water District, and it acquired another 41,000 af of Table A amount in 1999 from Kern County Water Agency and its member district, the Wheeler Ridge-Maricopa Water Storage District. There is ongoing CEQA-related litigation over the most recent acquisition of the 41,000 af Table A amount. However, there has been no invalidation of the completed agreement to transfer the 41,000 af Table A amount to CLWA and current water supply planning includes that Table A amount as CLWA corrects the CEQA technicality by preparing a new EIR to address the environmental consequences of the transfer. **Recycled Water** - In 1993, CLWA prepared a draft Recycled Water System Master Plan that outlined a multi-phase program to integrate recycled water into the overall water supply system in the basin. Phase I of that project, which will deliver approximately 1,700 afy, began deliveries of recycled water for golf course irrigation in mid-2003. Overall, by 2020, recycled water is expected to ultimately reclaim up to 17,000 afy of treated waste water suitable for irrigation of golf courses, landscaping, and other non-potable uses. ### V. Elements of the Groundwater Management Plan As part of long-term water supply planning in the Santa Clara River Valley East groundwater subbasin, Castaic Lake Water Agency (CLWA) and the municipal water purveyors in the basin, in concert with other groundwater pumpers in the basin, began conjunctive use operations in 1980 by importing supplemental surface water from the State Water Project and integrating it with local groundwater to meet all the water requirements in the basin. Prior to that time, and continuing to the present, various groundwater pumpers and other entities in the basin, including CLWA, have collected groundwater and related data on which historical and ongoing analyses of groundwater basin conditions have been made. Those monitoring efforts and basin analyses have allowed CLWA and other entities in the basin to progressively define and understand basin conditions, and to continue to meet increasing water demands over the last 23 years. Information derived from the monitoring and management efforts to date has allowed the various public and private pumpers in the basin to continue to rely on the groundwater basin for some or all of their water supply without significant concern that the resource was either overdrafted or otherwise negatively impacted. In light of the preceding, complemented most recently by the Memorandum of Understanding process that has initiated integrated management with United
Water Conservation District, which serves as the manager of adjacent downstream basins on the Santa Clara River (as described in Primary Element 9), local groundwater management has already been initiated consistent with the opportunity provided by Water Code Section 10753. However, despite those ongoing accomplishments, CLWA recognizes the concerns and issues that are discussed herein relative to groundwater and the adequacy of water supplies in the basin. With that recognition, and in part prompted by the requirements of AB 134, CLWA has prepared this broader-based groundwater management plan. To continue historical groundwater management activities and to address identified concerns and issues related to groundwater and water supply in the area, this Groundwater Management Plan has been developed to provide a framework for present and future actions. As has been the case for the groundwater management activities by CLWA and other local entities over the past 23 years, it is expected that this plan will be updated as new data are developed, particularly in light of the key role that groundwater monitoring (water levels and quality) has played, and will continue to play, in defining groundwater conditions and aquifer response to management actions. The management objectives, or goals, for the Santa Clara River East groundwater basin include the following: Goal 1: Development of Local Groundwater for Water Supply Goal 2: Avoidance of Overdraft and Associated Undesirable Effects Goal 3: Preservation of Groundwater Quality **Goal 4:** Preservation of Interrelated Surface Water Resources To accomplish those goals, with recognition of the opportunities encouraged by Water Code Section 10750 et seq. for local agency management of groundwater resources, this plan incorporates a number of components which are divided into primary, or essential, elements and secondary, or potential, elements. In both categories, the elements formally recognize the effectiveness of a number of ongoing water resource management activities. They recognize the need for additional activity, such as expanded conjunctive use of supplemental surface water, and recycled water, with local groundwater. They also reflect the wider focus on local groundwater management, such as continuing cooperation with the municipal water purveyors and other pumpers in the basin, and with other water resource management entities on the Santa Clara River, most notably United Water Conservation District, to address the impacts of regional resource opportunities and/or challenges. In summary, this Groundwater Management Plan will enable CLWA, the retail water purveyors, and their neighbors to continue use of local groundwater for regular water supply, to expand their use of local groundwater during dry periods or emergencies, and to work with other agencies via implementation of the following management plan elements. #### **Primary (Essential) Plan Elements** - 1. Monitoring of Groundwater Levels, Quality, Production and Subsidence - 2. Monitoring and Management of Surface Water Flows and Quality - 3. Determination of Basin Yield and Avoidance of Overdraft - wet and dry period pumping - control of well field drawdown - 4. Development of Regular and Dry Year/Emergency Water Supply - 5. Continuation of Conjunctive Use Operations - 6. Long Term Salinity Management - 7. Integration of Recycled Water - 8. Identification and Mitigation of Soil and Groundwater Contamination - involvement with other local agencies in investigation, cleanup, and closure - 9. Development and Continuation of Local, State and Federal Agency Relationships - 10. Groundwater Management Reports ## Secondary (Potential) Elements - 1. Continuation of Public Education and Water Conservation Programs - 2. Identification and Management of Recharge Areas and Wellhead Protection Areas - involvement in land use planning process - 3. Identification of Well Construction, Abandonment, and Destruction Policies - · water quality protection - manage vertical distribution of pumpage - 4. Provisions to Update the Groundwater Management Plan # Primary Element 1 - Monitoring of Groundwater Levels, Quality, Production, and Subsidence Prior to 1980, all water supply in the Upper Santa Clara River Area was developed from local groundwater; since 1980, imported surface water has become an increasing component of overall water supply in the area, but groundwater continues to meet all agricultural water demand and a significant part of municipal water demand. As a result of the long term development and use of groundwater in the area, there is a fairly substantial amount of historical groundwater level data, and a useful amount of groundwater quality data and groundwater pumping data that has been collected in the basin. All the available historical groundwater level, quality, and pumping data have been organized into a computerized data base for the Upper Santa Clara River Area. That data base, while separate, has been coordinated with an equivalent data base maintained by United Water Conservation District for the downstream basins on the Santa Clara River. The intent of database coordination has been to facilitate interpretation and reporting on groundwater and other water resource related issues by the respective agencies overlying the various basins along the river. The networks of wells from which groundwater level and groundwater quality data have been collected are illustrated in Figures 5-1 and 5-2. The networks are comprised of a combination of active production wells, inactive production wells, and dedicated monitoring wells, shown on Figures 5-1 and 5-2. Data collection has historically varied from randomly infrequent to regularly scheduled but infrequent (e.g. semi-annual). The historical data collection efforts cannot be classified as an organized area-wide program of groundwater data collection, there are generally sufficient data available on which to interpret basin conditions. Ultimately, it is recognized that monitoring of existing wells, and expansion of the network of both production and monitoring wells, are key to accomplishing all the goals for the basin in this management plan. Monitored groundwater levels, quality, and pumping will collectively provide the basis for defining basin conditions and developing operational protocols that allow conjunctive use to support ongoing groundwater supply while avoiding undesirable conditions such as chronically depressed groundwater levels or degraded groundwater quality. Thus, a primary element of this plan is to develop and implement a groundwater monitoring program that is comprised of a network of wells, mostly as illustrated in Figures 5-1 and 5-2, but possibly expanded to include some dedicated monitoring wells as well as some potential new production wells. The frequencies and types of groundwater data collection will vary as a function of specific monitoring objectives in various parts of the basin. For initial implementation purposes, basinwide groundwater monitoring protocols (locations and types of measurements, frequencies, etc.) are included in the Appendix to this Plan. It should be noted, in light of the lack of historical subsidence and the low potential for it to occur as discussed in Section III above, that no formal subsidence monitoring is planned, i.e. no extensometers, fixed-point ground surveys or remote sensing. However, if the analysis of planned additional dry-year pumping indicates the potential for subsidence attributable to lower groundwater levels, monitoring or other appropriate action (e.g. re-distributed or reduced pumping) will be undertaken. # Primary Element 2 - Monitoring and Management of Surface Water Flows and Quality The geologic and hydrologic configuration of the groundwater basin and the Santa Clara River system that overlies the aquifers in the basin is such that the River and the Alluvial aquifer can directly interact. Further, although the Saugus Formation has hydraulic characteristics that indicate it to be locally confined, groundwater can move between the Alluvium and the Saugus. The net result of the overall river-aquifer configuration is that groundwater is readily recharged Water Level Monitoring Well Network Santa Clara River Valley East Groundwater Subbasin ENGINEERS LUHDORFF & SCALMANINI CONSULTING ENGINEERS by periodic natural surface water flows in parts of the basin, generally to the east of Bouquet Canyon; and groundwater discharges to the river in other parts of the basin, generally to the west of Bouquet Canyon. As a result of the latter groundwater discharges to the river, in combination with treated waste water discharges from the two local regional treatment plants, there is a significant surface water outflow from the basin in the Santa Clara River. That surface water flow to the west across the County line has increased over the last 20 years (Figure 5-3). When considered in concert with the other elements of this groundwater management plan, a number of challenges related to surface water flow and quality are evident. First, knowledge of surface flow rates and quality, and variations in both, will be essential to incorporating surface water considerations into management of the interconnected aquifer system. Thus, monitoring of surface water flows and quality will be part of this plan; and the resultant data will be incorporated in the database of groundwater data that results from implementation of this element and Primary Element 1. Secondly, continuation of some surface flow and non-degradation of surface water quality would appear to be appropriate objectives, particularly as recycled water use is integrated into the overall water supply in the basin, and as dry-year dependence on groundwater increases. Those issues have begun to be addressed in the MOU process with neighboring United Water Conservation District, as described in Primary Element 9 of this Plan, but they will be
addressed on a more comprehensive basis as monitored data is collected, as a numerical groundwater flow model is developed and utilized (Primary Element 3), and as recycled water becomes part of the integrated water supply (Primary Element 7). Basin management of surface water flows and quality will also relate to potential groundwater management actions intended to augment yield, e.g. artificial groundwater recharge (Primary Elements 3 and 5), and groundwater management actions intended to preserve groundwater quality (Primary Element 6). For initial implementation purposes, surface water monitoring protocols (locations and types of measurements, frequencies, etc.) are included in the Appendix to this Plan. In light of the preceding, this plan element is included in the overall groundwater management plan to address surface water flows and quality in concert with analysis and management of groundwater levels and quality. The implementation of this plan element will be essential to accomplishment of the fourth management objective (goal) for the basin. ■Old Gage (11108500) □New Gage (11109000) approximately 280 cfs for 1998 water year Water Year (Oct. - Sept.) approximately 350 cfs for 1969 water year Average Daily Mean Streamflow (cfs) Average of Daily Mean Streamflow over the Water Year Santa Clara River at Los Angeles - Ventura County Line ### Primary Element 3 - Determination of Basin Yield and Avoidance of Overdraft In order to accomplish all the goals for the basin, it will be essential to determine what yield can be developed on both a regular and an intermittent (dry period or emergency) basis. Such a determination of basin yield will be made to accomplish the main objective of operating within the yield of the groundwater basin, avoidance of overdraft. On a long-term basis, there has not been any widespread, steady degradation of groundwater conditions that might be indicative of overdraft, i.e. decrease in groundwater levels or storage as a result of pumping in excess of the yield of the basin. There have been, and continue to be, short-term fluctuations in groundwater levels that are basically related to variations in local hydrological conditions, alternating increases and decreases in storage in response to wet and dry conditions (and associated fluctuations in recharge and pumping). Such fluctuations are typical of groundwater basin conditions in any conjunctive use setting, such as in this basin; groundwater is utilized from storage during dry years, or dry periods, and that storage is replenished during alternate wet years, or periods. The observation of these historical groundwater conditions, in combination with knowledge of pumpage from both the Alluvial and Saugus Aquifers, has led to current operational practices as well as general expectations regarding the approximate yield of the local groundwater system. While historical operating experience, complemented by observed groundwater conditions, is an appropriate basis for generally planning for available groundwater supplies, it is possible and appropriate to more precisely analyze the basin to determine values or ranges of yield under varying hydrologic conditions, and to assess the impacts of various management actions that might be implemented in the basin. The MOU process described in Primary Element 9 of this Plan includes the development of a numerical groundwater flow model which is intended to be utilized for determination of the yield of the basin under existing land use and under existing groundwater and surface water development conditions. It is also expected to be used for implementation of this Plan Element to assess the yield of the basin under future land use conditions as well as future ranges of surface water importation, groundwater development, and recycled water use through varying hydrologic conditions, i.e. wet and dry periods that affect the availability of imported surface water. The ultimate intent of this Plan Element is to develop an understanding and quantification of the yield of the basin, under varying hydrologic conditions and developing local cultural conditions, so that groundwater development and use can be managed in such a way to meet an appropriate fraction of total water demand while avoiding levels of groundwater use that would result in overdraft conditions. Thus, implementation of this Plan Element is essential to accomplishing the first and second management objectives (goals) for the basin. ## Primary Element 4 - Development of Regular and Dry Year/Emergency Water Supply The most recent updated Urban Water Management Plan (UWMP, December 2000) prepared by CLWA and the retail water purveyors in the basin (Newhall County Water District, Santa Clarita Water Company and Valencia Water Company) includes plans to develop 30,000 to 40,000 acrefeet per year (afy) from the Alluvial aquifer and 7,500 to 15,000 afy from the Saugus Formation in average/normal years. Both ranges of numbers are consistent with recent historical pumping that has not resulted in any indication of overdraft or other undesirable conditions. The UWMP also includes plans to slightly reduce Alluvial pumping in dry years (in recognition of historical experience with decreased groundwater levels in the eastern part of the basin during dry periods) to 30,000 to 35,000 afy, while potentially increasing dry-period Saugus pumping to 21,000 to 35,000 afy depending on the duration of dry conditions. A major consideration in this plan is the accomplishing of this element in concert with Primary Element 3, i.e. development of both regular and dry year/emergency groundwater supply within the yield of the basin in order to avoid overdraft. Toward that goal, the model described in Primary Element 3 will be used to analyze projected results, i.e. groundwater levels, storage and stream flow impacts, in order to design the optimal distribution of pumpage or to refine the ranges of regular or dry period/emergency pumping volumes. The result will facilitate a water transmission and distribution design, and will also facilitate planning for supplemental water supplies and planning for proactive recharge activities to augment basin yield as necessary to meet water supply requirements. Thus, implementation of this Plan Element, within the confines of Primary Element 3, will be essential to accomplishment of the first management objective (goal) for the basin. ## **Primary Element 5 - Continuation of Conjunctive Use Operations** Beginning with the initial delivery of imported surface water from the State Water Project (SWP) in 1980, CLWA and the retail water purveyors in the basin have been practicing the conjunctive use of imported surface water and local groundwater. Conjunctive use in this setting has consisted of meeting water demands with a combination of imported surface water and local groundwater. Groundwater pumping has remained within a range that has not caused any evidence of overdraft, or associated undesirable impacts, and has fluctuated within that range to meet a larger fraction of water demand during periods of reduced surface water availability, such as at the end of the 1987-1992 drought and for several years immediately thereafter. Imported surface water use, on the other hand, progressively increased from 1980 through 1990, substantially decreased in the early 1990's due to extended drought conditions in Northern California, returned slowly to pre-drought levels over about a five year period, and has progressively increased again since 1996. The historical trend in water demand and the trends in groundwater and imported (SWP) surface water use to meet that demand are illustrated in Figure 5-4. Conjunctive use of local groundwater and imported surface water will continue to be a key element in meeting all the goals for the basin, most notably utilizing groundwater for water supply without overdrafting the basin. Historical experience with groundwater pumping and aquifer response to varying hydrologic conditions has shown that the groundwater basin can support notable variations in pumping during wet and dry periods, but it cannot support continuous pumping at rates high enough to meet total local water demand. Thus, utilization of imported surface water in conjunction with local groundwater is essential to the management of groundwater for water supply without overdrafting that resource. As part of conjunctively using surface water and groundwater, it is recognized that, particularly when the surface water supply is imported from the State Water Project, there will be variations in the amount of available surface water supply from year to year. Similarly, there are expected to be variations in local groundwater conditions as a function of local hydrologic conditions which affect, among other things, the natural recharge to the groundwater basin from year to year. In the case of this basin, local (Southern California) hydrology which affects local groundwater conditions may not necessarily be the same as the hydrology in a distant (i.e., northern California) location that directly affects the availability of supplemental, imported surface water in any given year. Thus, conjunctive use management is necessary to ensure that the groundwater basin is maintained to meet a regular component of water supply and to also provide a larger component of water supply during "dry periods" that affect supplemental surface water availability. Conjunctive use management is similarly important to ensure that local groundwater can be replenished, via reduced pumping and/or as a result of wetter local Figure 5- hydrologic conditions, during periods of wet/normal surface water availability. In light of all the preceding, implementation of this Plan Element is essential to accomplishing all the management objectives (goals) for the basin. ## Primary Element 6 - Long Term Salinity Management In general, groundwater quality in the basin is such that
groundwater supplies meet standards for beneficial use in the basin, most of which is for municipal (domestic) use but some of which remains for agricultural and some other irrigation (non-domestic) use. There also have been no notable historical trends of groundwater quality degradation in the basin over time. However, a number of geologic and hydrologic factors suggest that observations and interpretation of groundwater quality warrant attention to ensure long-term preservation of groundwater quality. Notable among those geologic and hydrologic factors are: 1) the largely "closed" geologic nature of the aquifer system at the western limit of the basin (other than a thin section of Alluvium beneath the Santa Clara River, there is no continuity of aquifer materials between the Santa Clara River Valley East groundwater subbasin and the next downstream groundwater basin on the Santa Clara River, the Piru Basin in Ventura County); 2) the predominant groundwater flow direction in the basin toward the west, where there is the lack of continuity of aquifer materials for groundwater outflow; 3) a certain amount of rising groundwater discharge into the Santa Clara River; and 4) an increasing discharge of treated waste water into the Santa Clara River toward the western end of the basin which, when accounting for the planned use of a substantial amount of recycled water in the Basin (Primary Element 7) will result in higher salt concentrations than other sources of water supply in the Basin. The combination of the preceding factors suggests that, on a long-term basis, there could be an accumulation of dissolved minerals in the aquifer system if salinity is not managed in a way to avoid undesirable groundwater quality degradation. Consequently, this primary element is included in the overall groundwater management plan to include the interpretation of groundwater quality data (Primary Element 1) and to incorporate groundwater quality as an important consideration in the implementation of the other elements of the plan, most notably Continuation of Conjunctive Use Operations (Primary Element 5), Integration of Recycled Water (Primary Element 7), and Identification and Cleanup of Contaminated Groundwater (Primary Element 8). The Long Term Salinity Management element of the plan is essential to accomplishing the third management objective (goal) of preserving groundwater quality in the basin. ## **Primary Element 7 - Integration of Recycled Water** In 1993, CLWA prepared a Reclaimed Water System Master Plan that outlined a multi-phase program to deliver highly treated, recycled water in the Valley. At that time, potential recycled water uses in excess of 10,000 afy, of which about 9,000 afy were located within the CLWA service area, were identified. The first phase of the Reclaimed Water System Master Plan to deliver 1,700 afy has been environmentally reviewed and is being implemented, with initial deliveries having commenced in August 2003. The 1993 recycled water plan expected to reclaim up to 10,000 afy. CLWA has been updating that plan to ultimately provide up to about 17,000 afy for irrigation and other non-potable uses. It has also been recognized that, if the Newhall Ranch project is approved, total annual demands for recycled water in the area could ultimately approach 20,000 afy. This plan element is included in the groundwater management plan primarily because recycled water use in the Valley will supplant a substantial fraction of fresh water demand that would otherwise be met with potable water from some combination of pumped groundwater and imported surface (SWP) water. With total municipal, agricultural and other water demands projected to increase from about 75,000 afy at present to slightly more than 100,000 afy by 2020, the progressive increase in recycled water use from 1,700 afy to as much as 17,000 to 20,000 afy, recycled water use would reduce demands on potable sources (groundwater and imported SWP water) by up to nearly 20 percent. Accomplishment of this Plan Element will benefit the accomplishment of Elements 3 and 4, and will also contribute to the accomplishment of all four of the Basin Goals. # Primary Element 8 - Identification and Mitigation of Soil and Groundwater Contamination As in numerous other groundwater basins in California, there have been a number of leaking underground storage tanks or other similar situations which have released organic constituents into soil, and possibly into groundwater, in the basin. None of those has impacted municipal or other water supply wells and, consequently, there has been no adverse impact on groundwater supply in municipal or other water supply systems in the basin. However, the detection of perchlorate in the discharge from four Saugus wells (CLWA Santa Clarita Water Division Saugus Wells 1 and 2, Newhall County Water District Well 11, and Valencia Water Company Well 157) in 1997, followed by the detection of perchlorate in one Alluvial well (CLWA Santa Clarita Water Division Stadium Well) in 2002, has led to the inactivation of all those wells. They remain out of municipal water supply service to date. Experts retained by CLWA have opined that the cause of perchlorate contamination in the Saugus Formation is former operations associated with munitions manufacturing on property formerly owned by Whittaker-Bermite Corporation, which is immediately adjacent to all the impacted wells. Investigation and characterization of the perchlorate contamination, and initiation of control and cleanup are ongoing; however, remediation actions have not yet commenced. Consequently, the municipal water purveyors continue to be impacted by the loss of water supply capacity of the impacted wells. Associated with that loss is a concern about the migration of perchlorate contamination in a generally downgradient direction, toward other active wells completed in the Saugus Formation and the Alluvium and toward other potential well sites. In light of both the inactivation of wells and the potential downgradient impact on the aquifers, CLWA and the other retail water purveyors had initiated both legal action against responsible parties and technical investigation of the contamination. Recently the parties have entered into an interim settlement agreement which is intended to complete investigation and characterization of the contamination in a collaborative effort. This effort will facilitate and expedite remediation actions. The primary purpose for technical investigation of the perchlorate contamination by CLWA and the other municipal purveyors is to ultimately recover the currently unavailable water supply capacity that has resulted from the inactivation of impacted wells. Conceptually, that may be accomplished by some combination of reactivation of impacted wells and new well construction. CLWA has joined with the U.S. Army Corps of Engineers in a study to develop information about the contamination. CLWA and the retail water purveyors have also independently commissioned an assessment to conclude what treatment technology is appropriate for removal of perchlorate from pumped groundwater; they have also independently commissioned the application of a numerical groundwater flow and quality model to determine an optimal pumping program for 1) perchlorate removal from the aquifer, 2) control of its migration in the aquifer, and 3) restoration of impacted pumping capacity for water supply. With data derived from that work, CLWA and the other purveyors are preparing to submit an application to the State Department of Health Services, by late 2004, for a permit to return to pumping from the locally impaired Saugus Formation. The proposed pumping would be combined with approved wellhead treatment to render the treated water suitable for municipal supply. In addition to the latter objective to recover currently inactivated water supply, the proposed pumping would be designed and operated to remove contaminated groundwater and to control any further migration of contaminated groundwater toward other Saugus wells to the west. CLWA and the retail water purveyors then expect to be able to design and implement, alone or in concert with responsible parties, a contamination control and treatment program at or near their impacted wells that can, in part, make groundwater available for municipal or other beneficial use. They also expect that such a program will provide some hydraulic and associated water quality protection for other parts of the aquifer system to keep contamination from impacting other wells or other parts of the aquifers in which water supply wells might be completed. Regarding the balance of the aquifer system, water supply planning to date (i.e. the current Urban Water Management Plan) includes expanded development of the Saugus Formation for dryperiod and emergency water supply. Data development and control and treatment of groundwater contamination in the Saugus Formation will be critical to accomplishing that water supply plan. In terms of this groundwater management plan, accomplishment of this plan element will contribute to the accomplishment of all four management objectives (goals) for the basin. # Primary Element 9 - Development and Continuation of Local, State and Federal Agency Relationships As the local SWP contractor, CLWA has long-established working relationships with local and state agencies that will continue on an ongoing basis. By nature of its primary function, CLWA will continue to interact with state agencies, most notably the Department of Water Resources, on the operation of the State Water Project. The latter, of course, has been the source of supplemental imported surface water that has made the initiation and continuation of conjunctive use operations possible since 1980. It will also be the primary component, with local groundwater, in continuation of conjunctive use operations in the future (Primary Element 5 of this Plan). CLWA is the
treated surface water provider to all the retail water purveyors, including Newhall County Water District, Los Angeles County Waterworks District No. 36, Valencia Water Company, and its own Santa Clarita Water Division. CLWA has a historical and ongoing working relationship with all those local agencies, as well as with other local groundwater pumpers, to manage water supplies to effectively meet water demands within the available yields of imported surface water and local groundwater. In fact, the Advisory Council convened to assist in the preparation of this Plan is comprised representatives of all the local water purveyors and significant groundwater pumpers. A local Memorandum of Understanding (MOU) process among CLWA, other purveyors within CLWA's service area, and United Water Conservation District (UWCD) in neighboring Ventura County is a classic illustration of a local agency relationship that has produced the beginnings of local groundwater management, now embodied in this comprehensive plan, most notably in Primary Elements 1 through 5. In 2001, out of a willingness to seek opportunities to work together and develop programs that mutually benefit the region as well as their individual communities, those agencies prepared and executed the MOU that initiated a collaborative and integrated approach to several of the aspects of water resource management that are now included in this Plan. UWCD manages surface water and groundwater resources in seven groundwater basins, all located in Ventura County, downstream of the East Subbasin of the Santa Clara River Valley that is the focus of this Plan. United is thus a logical partner in the cooperation of management efforts to accomplish the objectives (goals) for this basin, particularly as they relate to preservation of surface water resources that flow through the respective basins. As a result of that MOU, the cooperating agencies have integrated their database management efforts (part of Primary Elements 1 and 2 of this Plan), have initiated the development of a numerical groundwater flow model (for utilization in Primary Elements 3, 4 and 5 of this Plan), and are continuing to prepare reports on the status of basin conditions, as well as on geologic and hydrologic aspects of the overall stream-aquifer system. A local extension of the interaction among CLWA, the retail water purveyors, and UWCD is an ongoing working relationship with the City of Santa Clarita. CLWA and the retail water purveyors meet regularly with City staff and also present water supply conditions via study sessions with the City Council on a routine basis. It is expected that the implementation of this Plan will result in the availability of a broader range of information transfer with the City relative to the existing and future water supply to its residents. An additional expectation of this Plan with respect to the relationship among CLWA, the retail water purveyors, and the City is the intent of CLWA and the purveyors to provide input to the City as a reviewer of proposed development relative to any potential contamination of groundwater associated with such proposed development. CLWA provides input to the City, as suggested in Water Code Section 10753.8, via review of land use plans and coordination with the City Planning Department to identify and assess any development-related activities which might pose a risk of groundwater contamination. By expressing this expectation of its groundwater management plan, CLWA is not intending to insert itself into the jurisdiction or authorization of any other land use permitting agency; rather, CLWA is intending to provide review and input to the land use permitting process to protect the groundwater supply against any potential contamination that might occur as a result of any given development project. This Primary Element is included in this Plan to formalize the historical local and state agency working relationships as part of comprehensively managing local groundwater, in concert with imported surface water and local recycled water, to accomplish all the management objectives (goals) for the basin. # Primary Element 10 - Groundwater Management Reports As briefly described in the Introduction of this Plan, local groundwater management planning already includes, among several other activities, analysis of groundwater conditions and preparation of annual reports on groundwater and all other aspects of water resources and water supplies in the Santa Clara River Valley East groundwater basin. In addition, recently formalized cooperative work with neighboring UWCD includes both regular reporting on the status of groundwater conditions and specific reporting on geologic and hydrologic aspects of the overall stream-aquifer system. For example, documentation of the numerical groundwater modeling work currently in progress is expected to be the first of the latter reports in the next year. Beginning in 1998, CLWA and the retail water purveyors in the basin have prepared a series of annual reports, known locally as the Santa Clarita Valley Water Report, to describe all aspects of water supply and water resource conditions in the basin. That report provides current information to local City and County land use agencies, and to other interested parties, about current water requirements, use of groundwater and treated imported surface water to meet those water requirements, groundwater conditions (pumping, groundwater levels and quality, etc.), local surface water conditions, the status of imported surface water supplies including details of delivered SWP water in the reported year as well as an up-to-date summary of available imported SWP water for the next year, a short-term projection of water requirements in the next year, and other appropriate details about water requirements and supplies such as, for example, the status of introducing recycled water as a component of non-potable water supply. In light of the frequency and comprehensive nature of the annual Water Reports, and also in light of the planned preparation of more detailed technical reports on various aspects of the basin as appropriate, the continued preparation of those reports will serve as regular and complete reporting on all aspects of this groundwater management plan. # Secondary Element 1 - Continuation of Public Education and Water Conservation Programs CLWA has provided water conservation and public education programs that will continue and will be expanded as a complement to and an element of this groundwater management plan. The expansion of water conservation will largely stem from CLWA's having signed the "Memorandum of Understanding Regarding Water Conservation in California" (Urban MOU) in 2001, which made CLWA a wholesaler member of the California Urban Water Conservation Council. CLWA has thus committed to implementation of cost-effective water conservation measures known as Best Management Practices (BMPs) that are included in the Urban MOU and are intended to reduce California's long-term urban water demands. The BMPs have been incorporated into the water demand management measures section of the Urban Water Management Planning Act. Water conservation and related public education measures have generally been developed in California to achieve the following goals: - meet legal mandates - reduce average annual potable water demands - reduce sewer flows - reduce water demands during peak seasons - meet drought restrictions. As a wholesaler of imported surface water CLWA has implemented the following BMPs for several years prior to signing the MOU: - distribution system water audits, leak detection and repair - public information - school education - wholesale agency assistance - conservation pricing - conservation coordinator. As a signatory to the MOU, CLWA's water conservation and public education program will expand to include the following BMPs found to be locally cost-effective, as detailed in the 2000 Urban Water Management Plan for CLWA and the Santa Clarita Valley retail purveyors. - water survey programs for single-family residential and multi-family residential programs - residential plumbing retrofits - metering with commodity rates for all new connections and retrofit of existing connections - large landscape conservation programs and incentives - high-efficiency washing machine rebate programs (when also provided by local energy providers or wastewater utilities) - conservation programs for commercial, industrial, and institutional accounts - wholesale agency programs to financially or otherwise support water conservation efforts by retailers (this measure will be expanded) - residential ultra-low-flow toilet replacement program. This Secondary Element, while identical to independent CLWA efforts in water conservation and public education, is incorporated in this Plan to complement other Plan elements, and to move toward accomplishment of all management objectives (goals) for the groundwater basin. # Secondary Element 2 - Identification and Management of Recharge Areas and Wellhead Protection Areas The 1986 Amendments to the federal Safe Drinking Water Act (SDWA) established a new Wellhead Protection Program (WPP) to protect groundwater that supplies drinking water wells for public water systems. Each state was required to prepare a WPP and submit it to the USEPA by June 19, 1989. However, California did not develop an active state-wide Wellhead Protection Program at that time. Subsequently, in 1996, reauthorization of the SDWA established a related program called the Source Water Assessment Program. In 1999, the California Department of Health Services (DHS) Division of Drinking Water and Environmental Management developed its Drinking Water Source Assessment Program (DWSAP), and EPA approved it. The overall objective of the DWSAP is to ensure that the quality of drinking water sources is protected. As discussed in Section 1 of this Plan, the potential
groundwater management plan component "identification and management of wellhead protection areas and recharge areas" is stated, even in the most recently amended version of Water Code Section 10753.8, as one that "may" be included. However, the wellhead protection aspect of this component, which was optional when AB 3030 was adopted, is now essentially required as a result of the 1996 SDWA reauthorization. In California, the DWSAP satisfies the mandates of both the 1986 and 1996 SDWA amendments. The California DWSAP includes delineation of the areas (i.e., protection areas or Groundwater Protection Zones) surrounding an existing or proposed drinking water source where contaminants have the potential to migrate and reach that source. The program includes preparation of an inventory of activities that may lead to the release of contaminants within these zones. The activities, referred to in the DWSAP as Potentially Contaminating Activities, include such land uses as gas stations and dry cleaners, as well as many other land uses. The activities also include known contaminant plumes regulated by local, state, and federal agencies. The zones, which are calculated based on local hydrogeological conditions and also well operation and construction parameters, represent the approximate area from which groundwater may be withdrawn during 2, 5, and 10 year time periods. These zones also represent the area in which contaminants released to groundwater could migrate and potentially affect the groundwater extracted by wells located within the designated zones. The DWSAP assessment also includes a risk or vulnerability ranking based on a combined numerical score that results from points assigned to various evaluations conducted as part of the DWSAP process. This ranking provides a relative indication of the potential susceptibility of drinking water sources to contamination. Although DHS is responsible for conducting drinking water source assessments for systems existing prior to the adoption of the California program, DHS has encouraged purveyors to perform their own assessments. Assessments for existing systems were due at the end of 2002; however, DHS received an extension allowing its assessment work to be completed by May 2003. Permitting of a new water supply well requires that a DWSAP be completed as part of the permit process, and this is responsibility of the applicant. Within CLWA, DWSAP assessments have been completed for the three municipal water purveyors who utilize groundwater for some of their water supply, including 15 for the CLWA Santa Clarita Water Division, 20 for Valencia Water Company, and 13 for Newhall County Water District. The results of the DWSAPs can be used as a planning tool to guide land use development in the vicinity of water sources. The DWSAPs prepared for water sources in the basin should, in some fashion, be reviewed every five years and updated more frequently as appropriate. The collective DWSAP information can also be integrated with other management activities (e.g., the geographical position of potential or existing contaminating activities can be incorporated in the monitoring program database; plume extents, as available, can be graphically displayed by aquifer and isoconcentrations) to aid siting of new wells, particularly when contaminant migration problems are also evaluated with respect to local hydrogeological conditions and the potential influence of nearby wells on plume migration. In addition to the wellhead protection program that is focused on wells that are sources of drinking water, a broader aspect of this Plan Element is protection of the overall recharge areas of the aquifer system in the basin. As discussed in Section III, the most developed aquifer, the Alluvium, has experienced historical fluctuations in groundwater levels in the eastern portion of the basin, but has had essentially constant groundwater levels in the western portion of the basin. The characteristic difference between the two portions of the basin, generally divided at the confluence of the Santa Clara River and its Bouquet Canyon tributary, is the perennial flow in the Santa Clara River to the west of that location versus the intermittent flow in the river to the east. The intermittent fluctuations in groundwater levels east of Bouquet Canyon are indicative of rapid response, i.e. recharge, from streamflow when it is present. Similarly, the relatively constant groundwater levels west of Bouquet Canyon are indicative of ongoing response, i.e. recharge, from the perennial flow in the river. In light of those conditions, part of this Plan Element is intended to protect the overall channel system of the Santa Clara River and its tributary system, notably where they overlie Alluvial aquifer materials of significant extent. Protection in this case is intended to mean preservation of the infiltration capacity of the stream channel so that both intermittent and perennial flows can continue to recharge the aquifer as has historically occurred. Finally, with regard to protection of recharge areas, it is expected that additional exploration and development of the Saugus Formation, for additional water supply as described in this Plan, will lead to further understanding of the locations and mechanisms for recharge of that aquifer, which is exposed at the surface throughout much of the area of this Plan. As that understanding evolves, part of this Plan Element will be to identify means of ensuring that significant portions of Saugus recharge are not compromised by land development activities. This Plan Element is included to incorporate the DWSAP efforts and the overall protection of groundwater recharge into the local groundwater management plan. Completion of DWSAP efforts to comply with state DHS requirements and preservation of overall aquifer recharge are key parts of accomplishing the first and third management objectives (goals) for the basin. # Secondary Element 3 - Identification of Well Construction, Abandonment, and Destruction Policies Well construction permitting in the basin is administered by the Los Angeles County Health Department, which effectively implements the State Well Standards for water wells, monitoring wells, and cathodic protection wells. Permitting of municipal supply wells is also within the purview of the State Department of Health Services. One goal of this management plan for the area, protection and preservation of groundwater quality requires that all wells be properly constructed and maintained during their operational lives, and properly destroyed after their useful lives, so that they not adversely affect groundwater quality by, for example, serving as conduits for movement of contaminants from the ground surface and/or from a poor quality aquifer to one of good quality. Toward that end, this element is included in the overall plan to support well construction and destruction policies, and to participate in their implementation in the Basin, particularly with regard to surface and inter-aquifer well sealing and proper well destruction, which are critical in the management of a multiple aquifer system that has some connection with the Santa Clara River and its tributaries. ## Secondary Element 4 - Provisions to Update the Groundwater Management Plan The primary and secondary elements of this local area groundwater management plan reflect the current understanding of the occurrence of groundwater in the Santa Clara River East Valley groundwater subbasin, and specific problems or areas of concern about that resource. Those management elements are designed to achieve specified goals to develop local groundwater for regular and dry year/emergency water supply while protecting and preserving groundwater quantity and quality for overlying beneficial use into the foreseeable future, and while also protecting and preserving valuable surface water resources that are directly related or connected to groundwater. While the groundwater management plan provides a framework for present and future actions, new data will be developed as a result of implementing the plan. That new data could define conditions which will require modifications to currently definable management actions. As a result, this plan is intended to be a flexible document which will be reviewed and updated to modify existing elements and/or incorporate new elements as appropriate in order to recognize and respond to future groundwater and surface water conditions. Although not intended to be a rigid schedule, review and updating of this plan will initially be conducted in five years, with subsequent future updates scheduled as appropriate at that time. In accordance with Primary Element 10, the retail purveyors and CLWA will continue to produce the Santa Clarita Valley Water Report on an annual basis. Data and information from these reports will be compiled and utilized as part of the review and updating of this plan. # Appendix I # Groundwater and Surface Water Monitoring Protocols The CLWA Groundwater Management Plan includes two Elements (Primary Elements 1 and 2) that relate directly to ongoing, and expanded as appropriate, monitoring of key hydrologic quantities associated with the implementation of the Plan. Notable among the data to be collected are groundwater levels, groundwater quality, pumpage from water supply wells, and surface water flows and quality. Other hydrologic data such as precipitation are intended to be measured and maintained in accordance with the standards in place for the respective precipitation gage stations in the Valley; consequently, this Appendix does not address the specific establishment of protocols for precipitation gaging. On another matter of hydrologic data, land subsidence, the Plan discusses the low probability for subsidence in the Valley, particularly as related to historical groundwater pumping from both the Alluvial and Saugus Formation aquifers. Consequently, the
Appendix does not address the establishment of protocols for measuring land subsidence. As noted in the Plan, if future analysis of increased pumping from the Saugus Formation, as currently planned, suggests changes in groundwater levels that might be conducive to inelastic subsidence, the need for subsidence monitoring will be reconsidered at that time; and some combination of land surface elevation surveying, remote sensing of land surface deformation, and measurement of earth consolidation via extensometers would be considered as part of establishing protocols for monitoring subsidence. ## **Groundwater Monitoring** For purposes of Plan implementation, the most essential groundwater-related data are water levels, water quality, and pumpage. Consequently, the following discussion of monitoring protocols focuses on those hydrologic parameters. Groundwater Levels - The distribution and frequency of current groundwater level measurements in Alluvial wells and in Saugus Formation wells are illustrated in Figures A1 and A2, respectively. Tables A1, A1a and A2 show the dates that groundwater level measurements were made in Alluvial and Saugus Formation wells. As discussed in the Plan, for the Alluvium, the distribution of monitoring is sufficient to interpret water level and groundwater storage trends. Thus, it is intended that the fundamental distribution and frequency of Alluvial groundwater level measurements remain generally as illustrated in Figure A1: general semi-annual measurements complemented by some quarterly measurements disbursed throughout the Alluvial aquifer. The only exception to the preceding intention is in the western-most portion of the Alluvium, where agricultural pumping remains the water supply objective and water level measurements are primarily annual. In part to conform to the balance of Alluvial groundwater level measurements, and more importantly to monitor stream-aquifer connection near the western, or downgradient, end of the Alluvium in the basin, it is the intent of Plan implementation to increase that water level monitoring to semi-annual to quarterly frequency. In the Saugus Formation, the distribution of groundwater level measurements is limited by the number and location of wells; the locations in Figure A2 reflect where the Saugus has been developed for water supply. Ultimately, as future exploration and development of the Saugus expand, it is expected that the distribution of groundwater level measurements will expand to those future well locations. For Plan implementation purposes, the existing monthly frequency of water level monitoring is intended to continue. Water level measurement methodology, which is dominated by utilization of electric sounders, is expected to remain largely unchanged. Some calibrated airlines and possibly some dedicated electro-hydraulic transducers are expected to complement electric sounders in certain wells. All those water level measurement methods are sufficiently accurate to satisfy the needs to which the resultant data is to be put. Groundwater Quality - The distribution and frequency of current groundwater quality monitoring in Alluvial wells and in Saugus Formation wells are illustrated in Figures A3 and A4, respectively. Tables A3 and A4 show the dates that groundwater quality (total dissolved solids) was monitored in Alluvial and Saugus wells. For the most part, the distribution and frequency of water quality sampling are sufficient to interpret general quality trends. One notable constraint in the Alluvium, however, is the discontinuation of water quality data collection in some wells since 1988, mostly toward the western, or downgradient, end of the basin. In order to restore an ongoing historical record, part of Plan implementation will be to attempt to re-establish regular, i.e. yearly to triennial, water quality sampling and analyses in those wells with some form of historical water quality record. In the same vein, part of Plan implementation will include selection of a number of wells in key locations, e.g. near the mouths of canyons, for semi-annual analysis of indicator parameters as a basis for assessing seasonal or other variations in groundwater quality. Finally with regard to groundwater quality, the spatial limitations on Saugus water quality data are comparable to the limitations related to Saugus groundwater levels, but as a result of the limited, localized development of the Saugus for water supply. While the regular monitoring of quality will continue via Plan implementation, the expansion of Saugus water quality data is expected to follow the expanded exploration and development of that aquifer as described for groundwater levels above. Production (Pumpage) - The great majority of water supply wells in the basin are now dedicated to municipal supply; consequently, those wells are equipped with production meters which allow direct monitoring of pumpage on any desired frequency, e.g. instantaneous flow rate, or cumulative volumes on a daily, monthly, or other frequency. A few wells remain dedicated to agricultural water supply, and those wells are not equipped with flow meters. However, long-standing practice at all those wells has been to meter power consumption for each well and to combine that data with the results of annual pump performance testing in order to indirectly compute approximate pumpage from each agricultural well. That methodology is sufficiently accurate for ongoing documentation of pumpage and interpretation of basin response to pumping; it is also sufficiently accurate for groundwater flow model input as part of assessing basin yield, all as part of this Plan. Consequently, implementation of this Plan includes regular reading of flow meters on municipal supply wells and continued indirect computation of agricultural pumpage from the remaining agricultural water supply wells in the basin. ## **Surface Water Monitoring** Part of Plan implementation is the development of a surface water quality monitoring network. Of particular concern is establishing a surface water quality data set that, combined with groundwater data, will allow for a more detailed analysis of stream-aquifer interactions. The data of primary interest for this and other Plan purposes are surface water flow and surface water quality, discussed below. Surface Water Flow - The existing surface water flow monitoring network within the basin consists of stream flow gaging stations along the Santa Clara River and its tributaries, and measurements of discharge to the River from the Saugus and Valencia Water Reclamation Plants. Monitoring of stream flow gages along the River and its tributaries has been mostly sporadic and limited to times prior to 1977, although measurements at some gages resumed in 2002. One exception is the gage at the Los Angeles-Ventura County line, where the daily mean stream flow was monitored from 1953 to 1996; the gage was replaced with one downstream near Piru in 1996. The Los Angeles County Sanitation Districts monitors the average discharge flow of treated wastewater from the Saugus and Valencia Water Reclamation Plants to the Santa Clara River. Plan implementation will include evaluating the distribution, future accessibility and configuration of the existing stream flow gaging stations to determine if they will be suitable for inclusion in the ongoing surface water flow monitoring network. Plan implementation will further include installation and operation of gage station modifications, as well as installation and operation of additional dedicated gaging stations as determined to be required. Surface Water Quality - Surface water quality has been analyzed at many locations along the Santa Clara River and its tributaries but, with few exceptions, the data is limited to several measurements at each location. Water quality in the Santa Clara River at the Los Angeles-Ventura County line was analyzed on a semi-annual basis from 1951 to 1988, and is currently measured quarterly by United Water Conservation District. Since 2002, the Los Angeles County Department of Public Works has monitored water quality in the Santa Clara River near Interstate 5 during four wet weather events and at two other times each year to comply with the requirements of a National Pollution Discharge Elimination System (NPDES) permit that covers the County and 84 incorporated cities. The Saugus and Valencia Water Reclamation Plants also monitor the quality of the treated wastewater they discharge to the Santa Clara River as part of compliance with the requirements of their NPDES permits. Plan implementation will include identifying key locations for future surface water quality monitoring, identification of constituents of concern and monitoring frequency for each location, and implementation of appropriate sampling and analytical methodology at the selected key sites. Table A1 Dates of Historic Water Level Measurements in Alluvial Wells Santa Clara River Valley Groundwater Basin, East Subbbasin Single Measurement: — More Than One Measurement per Year: — Page 1 of 4 Table A1 - Continued Dates of Historic Water Level Measurements in Alluvial Wells Santa Clara River Valley Groundwater Basin, East Subbbasin Single Measurement: —— More Than One Measurement per Year: ——— Table A1 - Continued Dates of Historic Water Level Measurements in Alluvial Wells Santa Clara River Valley Groundwater Basin, East Subbbasin Single Measurement: --- More Than One Measurement per Year: ---- Table A1 - Continued Dates of Historic Water Level Measurements in Alluvial Wells Santa Clara River Valley Groundwater Basin, East Subbbasin Table A1a Dates of Historic Water Level Measurements in LACFCD Alluvial Wells Santa Clara River Valley Groundwater Basin, East Subbbasin Single Measurement: --More Than One Measurement per Year: --'35 '40 '45 '55 '65 '70 ٠75 '60 '80 '85 '90 '95 '00 '05 '40 '45 '35 '50 '55 '60 '65 '70 '75 '80 '85 '90 '95 '00 '05 '35 40 '45 '50 '55 '60 65 '70
'75 '80 '85 '00 '05 '35 '40 45 '50 '55 '60 65 '70 '75 '80 '85 '90 95 '00 '05 '40 '35 45 '50 '55 '65 '60 '70 '75 '80 '85 '90 '95 '00 '05 '35 '40 '45 '50 '55 '60 '70 '75 '80 65 '85 .90 '95 ,00 '05 '35 '40 '45 '50 **`5**5 '60 '65 '70 '75 '80 '85 '90 '95 '00 '05 '40 '45 '35 '50 '55 '75 '60 '70 '95 '00 '05 '35 40 **'**45 '50 '55 '60 65 '70 '75 '80 '85 .80 '95 '00 '05 '35 '40 45 '50 '55 '60 65 '70 '75 '80 '95 '00 '85 '90 '05 '35 '40 '45 50 **'**55 '60 ۱75 '65 '70 ,80 '85 '90 '95 '00 '05 40 '45 50 '55 '60 '65 '70 '75 '80 '05 '85 '90 '95 100 '35 40 '45 '50 **†5**5 '60 '65 '70 '75 '80 '85 '90 '95 '00 '05 35 40 '45 '50 '55 60 65 '80 '70 '75 '85 '90 '95 ,00 '05 40 '35 '45 **`**55 '50 '60 65 '70 '75 .80 '85 '90 '95 '00 '05 '35 '40 '45 '50 '55 '65 '70 '75 '60 '80 '85 '90 '95 .00 '05 '40 '45 '55 '60 '65 '70 '75 '80 '85 '90 '95 '00 '05 '35 40 '45 50 '70 '85 '90 '95 '00 '05 '35 '40 '45 50 '55 **'**65 '70 ٠75 '60 '80 '85 '90 '95 '00 '05 '85 '35 40 '45 50 '55 '60 65 '70 '75 '80 '00 '90 '95 '05 '35 40 '45 '50 '55 65 '70 '75 '80 '85 '95 '90 00° '05 40 '35 '45 '50 '55 '60 '65 '70 **'75** '85 '80 ,80 '95 '00 '05 ٠75 '80 '85 '90 '95 ,00 '55 '60 '65 '70 '05 # Table A1a - Continued Dates of Historic Water Level Measurements in LACFCD Alluvial Wells Santa Clara River Valley Groundwater Basin, East Subbbasin | A CONTRACTOR OF THE PARTY TH | Single Measurement: | More Than One Measurement per Year: - | | |--|---------------------|---------------------------------------|--| | | | | | | '35 | '40 | '45 | '50 | '55 | '60 | '65 | '70 | '75 | '80 | 85 | '90 | '95 | '00 | '05 | |------------|------------------|-----|----------------------------------|-----------------------|--------------------------|--|-------------|-------------|-----|--|-----|-------------|-----|-----| | '35 | '40 | '45 | '50 | '55 | '60 | '65 | '70 | '75 | '80 | '85 | '90 | '95 | '00 | '05 | | 35 | '40 | 145 | '50 | '55 | '60 | '65 | '70 | '75 | '80 | '85 | '90 | '95 | '00 | '05 | | °35 | '40 | '45 | '50 | ·55 | ,60 | '65 | '70 | '75 | '80 | '85 | '90 | '95 | '00 | '05 | | '35 | '40 | '45 | ·50 | 55 | '60 | `65 | '70 | '75 | '80 | '85 | '90 | ' 95 | '00 | '05 | | '35 | '40 | '45 | '50 | '55 | '60 | '65 | '70 | '75 | '80 | '85 | '90 | '95 | '00 | '05 | | '35 | '40 | '45 | '50 | '55 | '60 | '65 | '70 | '75 | '80 | '85 | '90 | '95 | ,00 | *05 | | '35 | '40 | °45 | > ### (# ### 5#
'50 | #-#-#-#
`55 | # # # # # # # 160 | ************************************** | '70 | '75 | '80 | '8 5 | '90 | '95 | '00 | '05 | | '35 | '40 | '45 | '50 | '55 | '60 | '65 | '70 | ° 75 | '80 | '85 | '90 | '95 | '00 | '05 | | '35 | '40 | '45 | *50 | '55 | *60 | '65 | '7 0 | '75 | '80 | '85 | '90 | '95 | '00 | *05 | | <u>'35</u> | '40 | '45 | '50 | '55 | ,60 | '65 | '70 | 175 | '80 | '85 | '90 | '95 | '00 | '05 | | ·35 | '40 | '45 | '50 | '55 | '60 | '65 | '70 | '75 | '80 | '85 | '90 | '95 | '00 | '05 | | '35 | '40 | '45 | '50 | ·55 | '60 | '65 | '70 | '75 | '80 | '85 | '90 | '95 | ,00 | '05 | | '35 | '40 | '45 | '50 | '5 5 | ,60 | '65 | '70 | *75 | '80 | '85 | '90 | '95 | '00 | '05 | | '35 | '40 | '45 | '50 | '55 | '60 | | '70 | '75 | '80 | '85 | '90 | '95 | '00 | ·05 | | °35 | · 4 0 | '45 | '50 | ·55 | *60 | '65 | *70 | '75 | '80 | '85 | '90 | •95 | ,00 | '05 | | '35 | '40 | '45 | '50 | '55 | '60 | ************************************** | '70 | '75 | '80 | '85 | '90 | '95 | '00 | ′05 | | '35 | '40 | '45 | '50 | '55 | '60 | * * * *
'65 | '70 | '75 | '80 | '85 | '90 | 95 | '00 | ·05 | | ,32 | '40 | *45 | '50 | '55 | '60 | '65 | '70 | '75 | ,80 | ·85 | .90 | '95 | '00 | '05 | | '35 | '40 | '45 | '50 | '55 | '60 | '65 | '70 | '75 | '80 | '85 | '90 | '95 | '00 | .02 | | ,35 | '40 | '45 | '50 | '55 | '60 | '65 | ʻ70 | '75 | ·80 | ·************************************* | '90 | 195 | '00 | '05 | | '35 | '40 | *45 | '50 | '55 | '60 | 65 | '70 | '75 | '80 | ¹85 | '90 | ·
'95 | '00 | '05 | | '35 | '40 | '45 | '50 | · 55 | '60 | ' 65 | '70 | '75 | '80 | '85 | '90 | '9 5 | ,00 | ·05 | | | | | | | | | | | | | | | | | # Table A1a - Continued Dates of Historic Water Level Measurements in LACFCD Alluvial Wells Santa Clara River Valley Groundwater Basin, East Subbbasin Table A2 Dates of Historic Water Level Measurements in Saugus Wells Santa Clara River Valley Groundwater Basin, East Subbbasin Table A3 Dates of Historic Water Quality Measurements (TDS) in Alluvial Wells Santa Clara River Valley Groundwater Basin, East Subbbasin Single Measurement: — More Than One Measurement per Year: — | 04N/15W-06P01 | '35 | '40 | '45 | '50 | ·
'55 | ······································ | '65 | '70 | '75 | '80 | *85 | '90 | '95 | '00 | '05 | |---------------|---|--|---------|-----------------|-------------|---|-------------|---------------------------------------|--|--|--|----------|--|---|---------------------| | 04N/15W-13Q03 | 35 | '40 | '45 | · 50 | '55 | ·
'60 | 65 | '70 | · · · · · · · · · · · · · · · · · · · | '80 | '85 | '90 | '95 | '00 | '05 | | 04N/15W-18N03 | '35 | '40 | '45 | ·50 | · | '60 | '65 | '70 | '75 | '80 | '85 | '90 | '95 | ,00 | '05 | | 04N/15W-21K01 | '35 | 40 | '45 | ·50 | '55 | '60 | '65 | '70 | '75 | '80 | '85 | '90 | '95 | ,00 | '05 | | 04N/15W-21N01 | '35 | '40 | · | ·50 | '55 | '60 | 65 | '70 | '75 | '80 | '85 | '90 | '95 | '00' | (
'05 | | 04N/15W-21N02 | ·35 | '40 | '45 | '50 | '55 | '60 | 65 | '70 | ·*···································· | '80 | <u>* (; .) (; .) (; .) (; .) (; .) (; .) (; .)
(; .) (;</u> | '90 | '95 | ,00 | '05 | | 04N/15W-21N03 | ;35 | '40 | '45 | '50 | ·
'55 | '60 | ·
·65 | '70 | '75 | '80 | '85 | '90 | '95 | '00 | '05 | | 04N/15W-22J01 | · | '40 | '45 | '50 | '55 | '60 | 65 | '70 | '75 | '80 | '85 | ·90 | '95 | '00 | ,02 | | 04N/15W-23C05 | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | '40 | '45 | '50 | '55 | '60 | '65 | '70 | `75 | '80 | '8 5 | '90 | 195 | '00 | -
'05 | | 04N/15W-23F06 | 35 | ······································ | '45 | '50 | '55 | '60 | '65 | 170 | '75 | '80 | '85 | '90 | '95 | '00 | ····· | | 04N/15W-23F07 | '35 | '40 | °45 | '50 | *55 | '60 | '65 | '70 | ·-·-·-································ | '80 | '85 | '90 | '95 | '00 | ·
'05 | | 04N/15W-23G01 | '35 | '40 | '45 | · | '55 | '60 | ·· | '70 | · | ·************************************* | *85 | • | *95 | '00 | '05 | | 04N/15W-23H01 | '35 | '40 | · | [,] 50 | ·55 | ·60 | · | ·70 | ·75 | '80 | '85 | '90 | '95 | '00 | ·;
'05 | | 04N/15W-24E03 | | '40 | · | '50 | · | · ······ | · | · · · · · · · · · · · · · · · · · · · | '75 | '80 | '85 | '90 | ••••••••••••••••••••••••••••••••••••• | '00 | '05 | | 04N/16W-04H01 | '35 | '40 | '45 | '50 | '55 | ····· ································ | '65 | '70 | '75 | '80 | '85 | '90 | ······································ | '00 | '05 | | 04N/16W-07Q01 | '35 | · ** | '45 | ** * '50 | '55 | '60 | '65 | ·70 | `75 | '80 | '85 | '90 | '95 | ,00 | '05 | | 04N/16W-09H02 | '35 | '40 | '45 | '50 | '55 | -4i | '65 | '70 | '75 | '80 | '85 | '90 | *95 | '00 | i
'05 | | 04N/16W-09Q03 | | '40 | '45 | '50 | ·55 | '60 | 165 | '70 | 175 | ,80 | '85 | '90 | '95 | ,00 | '05 | | 04N/16W-12N02 | | '40 | '45 | '50 | 155 | '60 | 65 | ·70 | | '80 | '85 | '90 | '95 | .00 | · | | 04N/16W-14E02 | | '40 | '45 | '50 | | ((| an a santan | | [-#-t | F 100-100 被 - M - M | } | B | ··· | mandra d'arthur ar de com aire a contra | | | 04N/16W-15Q03 | janak ereberat | 40 | | | '55
 | '60 | '65
'65 | '70 | '75 | '80 | '85 | '90 | '95 | '00 | '05 | | 04N/16W-15R01 | '35 | | '45
 | '50 | '55
 | '60 | ·65 | '70 | '75 | '80 | '85 | ,30 | '95
 | '00 | '05 | | 04N/16W-16Q01 | '35 | '40 | 145 | 150 | ' 55 | '60 | '65 | '70 | '75 | '80 | '85 | '90 | '95 | '00 | '05 | | | '35 | '40 | '45 | '50 | '55 | '60 | '65 | '70 | '75 | '80 | '85 | .90 | '95 | .00 | '05 | ## Table A3 - Continued Dates of Historic Water Quality Measurements (TDS) in Alluvial Wells Santa Clara River Valley Groundwater Basin, East Subbbasin Single Measurement: --- More Than One Measurement per Year: --- | 04N/16W-17A05 | '35 | '40 | '45 | '50 | '55 | '60 | '65 | '70 | '75 | '80 | '85 | '90 | '95 | .00 | '05 | |--|---|-----------------------------|-----------------------------|-----------------------------|--|-------------------------|--|---------------------------------|---|-----------------------------------|--|--|--|--------------------------|---------------------------------| | 04N/16W-22C01 | '35 | '40 | °45 | '50 | '55 | '60 | '65 | '70 | '75 | '80 | '85 | '90 | '95 | ,00 | 105 | | 04N/16W-22C03 | } ;
'35 | '40 | '45 | '50 | 155 | ·60 | '65 | ′70 | '75 | '80 | '85 | '90 | '95 | '00 | '05 | | 04N/16W-22C04 | '35 | ,40 | '45 | · | '55 | '60 | · | ′70 | '75 | '80 | 185 | 190 | '95 | ,00 | '05 | | 04N/16W-22C07 | 7 | '40 | '45 | '50 | '55 | '60 | '65 | '70 | · ************************************ | '80 | '85 | '90 | '95 | ' ''''' | ```;
`05 | | 04N/16W-22D02 | 2
35 | '40 | '45 | '50 | ·· = ·································· | ·60 | ······································ | | '75 | - ₩₩₩₩₩
'80 | ≡-≡
'85 | | *95 | '00 | _' | | 04N/16W-23A01 | ' 3 5 | ·40 | ¹45 | ·50 | ·55 | '60 | ·65 | ·70 | '75 | '80 | *85 | ************************************** | · | · ············ | '05 | | 04N/16W-23A02 | <u></u> | '40 | '45 | '50 | '55 | '60 | '65 | '70 | '75 | '80 | ······································ | '90 | '95 | '00 | ······;
'05 | | 04N/16W-23F01 | | '40 | '45 | '50 | '55 | '60 | | '70 | '75 | 180 | '85 | '90 | ************************************** | '00 | '05 | | 04N/16W-24A06 | | | | '50 | 155 | '60 | 165 | '70 | 75 | '80 | '85 | '90 | '95 | ·00 | '05 | | 04N/16W-24B03 | 3 | | | | | 60 | | | | | | | | niko sa 🕶 kanada na da | 4+ | | | '35 | '40 | '45 | '50 | '55 | 60 | '65 | '70 | '75 | '80 | '85 | '90 | '95 | '00 | '05 | | 04N/17W-01A01 | | | | | | | ·· | | | | | - | | | | | 04N/17W-01A01 | '35
, | *40 | '45 | '50 | '55 | '60 | '65 | `70 | '75
 | '80 | 185 | ' 8 | '95 | .00 | 05 | | | '35
'35 | '40
'40 | '45
'45 | '50
'50 | 755 | '60
'60 | i— a a —∎
'65 | | | '80
'80 | '85 | '90
'90 | '95
'95 | ,00 | '05 | | 04N/17W-01J01 | '35
'35
'35 | | | | | ** 160 | i— a a —∎
'65 | <u> </u> | | ļúmstanijem turia | ······································ | '90 | | -4 | | | 04N/17W-01J01
04N/17W-12C0 ⁻
04N/17W-12G0 ⁻ | '35 '35 '35 '35 | '40 | '45 | '50 | '55 | '60 | '65 | '70 | '75 | '80 | '85 | '90 | '95 | †00 | '05 | | 04N/17W-01J01
04N/17W-12C0-
04N/17W-12G0-
04N/17W-12P01 | '35 '35 '35 '35 '35 | '40 | '45 | '50 | '55 | '60
'60 | '65 | '70 | '75 | '80
'80 | '85
'85 | '90
'90 | '95
'95 | '00' | '05 | | 04N/17W-01J01
04N/17W-12C0
04N/17W-12G0
04N/17W-12P01
04N/17W-13C0 | '35 '35 '35 '35 '35 '35 | '40
'40 | '45 '45 | '50 '50 '50 | '55 '55 '55 | '60
'60 | '65
'65 | '70 '70 '70 | '75 | '80
'80 | '85 '85 '85 | '90
'90 | '95
'95
'95 | '00 | '05 | | 04N/17W-01J01
04N/17W-12C0
04N/17W-12G0
04N/17W-12P01
04N/17W-13C02 | '35 '35 '35 '35 '35 '35 '35 '35 | '40 '40 '40 '40 | '45 '45 '45 | '50 '50 '50 | '55
'55 | '60
'60 | '65
'65 | '70 '70 '70 '70 | '75 '75 '75 | '80
'80
'80 | '85 '85 '85 | '90
'90 | '95 '95 '95 | '00 | '05 '05 | | 04N/17W-01J01
04N/17W-12C0
04N/17W-12G0
04N/17W-12P01
04N/17W-13C0
04N/17W-13C02 | '35 '35 '35 '35 '35 '35 '35 '35 '35 '35 | '40 '40 '40 '40 | '45 '45 '45 '45 | '50 '50 '50 '50 '50 | '55 '55 '55 '55 | '60 '60 '60 | '65
'65
'65 | '70 '70 '70 '70 | '75 '75 '75 '75 | '80 '80 '80 '80 | '85 '85 '85 '85 | '90 '90 '90 | '95 '95 '95 '95 | ,00
,00 | '05 '05 '05 '05 | | 04N/17W-01J01
04N/17W-12C0
04N/17W-12G0
04N/17W-12P01
04N/17W-13C02
04N/17W-13C02
04N/17W-14Q02
04N/17W-14Q02 | '35 '35 '35 '35 '35 '35 '35 '35 '35 '35 | '40 '40 '40 '40 '40 | '45 '45 '45 '45 '45 | '50 '50 '50 '50 '50 | '55 '55 '55 '55 '55 | '60 '60 '60 '60 | '65 '65 '65 '65 | '70 '70 '70 '70 '70 | 775 775 775 775 775 775 | '80
'80
'80
'80 | '85 '85 '85 '85 | 90 '90 '90 '90 | '95
'95
'95
'95 | '00 '00 '00 '00 '00 '00 | '05
'05
'05
'05
'05 | | 04N/17W-01J01
04N/17W-12C0
04N/17W-12G0
04N/17W-12P01
04N/17W-13C0
04N/17W-13C02
04N/17W-14Q02 | '35 '35 '35 '35 '35 '35 '35 '35 '35 '35 | '40 '40 '40 '40 '40 '40 | '45 '45 '45 '45 '45 '45 | '50 '50 '50 '50 '50 '50 '50 | '55 '55 '55 '55 '55 '55 '55 | '60 '60 '60 '60 '60 | '65 '65 '65 '65 '65 | 770
770
770
770
770 | '75 '75 '75 '75 '75 '75 '75 | '80 '80 '80 '80 '80 | '85 '85 '85 '85 '85 '85 | '90 '90 '90 '90 | '95 '95 '95 '95 '95 '95 | ,000
,000
,000 | '05 '05 '05 '05 '05 '05 | | 04N/17W-01J01
04N/17W-12C0
04N/17W-12G0
04N/17W-12P01
04N/17W-13C02
04N/17W-13C02
04N/17W-14Q02
04N/17W-14Q02 | '35 '35 '35
'35 '35 '35 '35 '35 '35 '35 | '40 '40 '40 '40 '40 '40 '40 | '45 '45 '45 '45 '45 '45 '45 | '50 '50 '50 '50 '50 '50 '50 | '55 '55 '55 '55 '55 '55 '55 | '60 '60 '60 '60 '60 '60 | '65 '65 '65 '65 '65 '65 | '70 '70 '70 '70 '70 '70 | 775 775 775 775 775 775 775 775 | *80 *80 *80 *80 *80 *80 *80 | *85 *85 *85 *85 *85 *85 *85 *85 | 90 90 90 90 | '95 '95 '95 '95 '95 '95 '95 | '000 '000 '000 '000 '000 | '05 '05 '05 '05 '05 '05 | ## Table A3 - Continued Dates of Historic Water Quality Measurements (TDS) in Alluvial Wells Santa Clara River Valley Groundwater Basin, East Subbbasin Table A4 Dates of Historic Water Quality Measurements (TDS) in Saugus Wells Santa Clara River Valley Groundwater Basin, East Subbbasin - Monthly - Quarterly - Twice Yearly - Yearly - Unknown Status - Monthly - Unknown Status - Every 1 to 3 Years - Every 1 to 3 Years (through 1988) - O Every 3 Years - Every 3 Years (through 1988) - Some Historic - Every 1 to 3 Years - Every 3 Years ## **Appendix II** ## Groundwater Management Plan Public Comments | PARTY | COMMENT | APPLICABLE GWMP
SECTION/ | RESPONSE | |---|--|--|---| | | | COMPLIANCE | | | UWCD
#5 | Under Primary Element 2 related to surface flows, in addition to SWP water contributing to the increased flow of the Santa Clara River, other considerations should be noted (hydrologic cycle, Alluvial pumping). | Primary Element 2 | As noted above, discussion of groundwater-related conditions is included in the Plan as a frame of reference for the Plan objectives and elements. Future interpretation and reporting will take such details as the impacts of the hydrologic cycle and Alluvial pumping into account. | | Santa Clarita Organization for Planning and the Environment | Extensive pumping and lack of protection of recharge areas have resulted in almost complete elimination of surface flows and summer ponding necessary to wildlife as well as causing water level drops in wells that have resulted in water quality and availability problems for small users. | Section III (Groundwater Levels and Storage) and (Groundwater Quality) and Primary Elements 1, 2 and 3 | See responses to SCOPE Comments 5, 6 and 9, Sand Canyon Comments 1 and 7, and Sierra Club Comment 3 regarding pumping within basin yield, avoidance of overdraft, preservation of recharge areas, and consideration of riparian conditions. | | SCOPE
#2 | Concern that environmental organizations, small well owners, City of Santa Clarita, LA County, and others were not included on the Advisory Board. | Water Code Appendix § 103-
15.1(e)(2) | CLWA legal counsel has confirmed that CLWA complied with the requirements of AB 134 regarding the composition of the Advisory Council. LA County was represented by LA Co. WWD #36 and LA County Sheriff's Department | | SCOPE
#3 | The GWMP should include a timeline for completion of the plan components. | AB 3030 ² and AB 134 ³ | AB 3030 and AB 134 do not require the inclusion of a timeline. | | SCOPE
#4 | The GWMP is lacking in the review of land use plans and coordination with land use agencies. Land use issues should be given higher priority. This may include a wellhead protection plan. | Water Code § 10753.8(l); Primary Element 9 and Secondary Element 2 | Primary Element 9 and Secondary Element 2 have been expanded to further address general preservation of recharge areas and appropriate review of land use plans to protect against potential groundwater contamination. | | SCOPE
#5 | GWMP should address maintaining tributaries in a natural state to enhance water recharge and quality. | This is not explicitly required by AB 3030 but does relate to Secondary Element 2. | Secondary Element 2 has been expanded to address preservation of in-channel recharge areas in both the Santa Clara River and its tributaries. | ² Stats. 1992, Ch. 947. ³ Stats. 2001, Ch. 929. C:Ubocuments and Settings!WaryLouC\Local Settings!Temporary Internet Files!OLK3A8IGWMP COMMENT MATRIX REVISED OCT 291.doc | PARTY | COMMENT | APPLICABLE GWMP
SECTION/
COMPLIANCE ¹ | RESPONSE | |-------------------|--|--|---| | Sand Canyon
#2 | Advisory board lacks representation by rural well owners. | Water Code Appendix § 103-
. 15.1(e)(2) | CLWA complied with the requirements of AB 134 regarding the composition of the Advisory Council. | | Sand Canyon
#3 | GWMP should include timelines for completing its phases. | AB 3030 and AB 134. | Timelines are not required by AB 3030 or AB 134. | | Sand Canyon
#4 | GWMP is lacking in its review of land use plans and coordination with land use agencies. | Water Code §10753.8(1) | See response to SCOPE Comment β above. | | Sand Canyon
#5 | Perennial yield estimates for the Santa Clara
River are higher than that provided in a
Richard Slade report. Agricultural runoff is
no longer a factor; agricultural usage was
not metered historically, and former
recharge areas have been paved. | Section IV (Existing and Projected
Water Supplies) | See response to SCOPE Comment 8 above. | | Sand Canyon
#6 | Santa Clara River should not be defined in terms of percolating groundwater. GWMP should clarify relationship between river and Saugus formation. | Section III | The GWMP is not an appropriate document in which to define the legal classification of groundwater, whether in the Alluvium or the Saugus Formation; consequently, there is no expression in the GWMP to describe the legal classification of groundwater in the basin. The entire focus of the GWMP is management of groundwater toward long-term preservation of both the quantity and quality of the resource. | | Sand Canyon
#7 | GWMP's assertions against existence of overdraft or other undesirable conditions are incorrect since water levels in wells have reached historic lows. In addition, riparian conditions on the Santa Clara River and tributaries show signs of water deprivation. | Section III (Areas of Concern and Identified Problems) | See response to Sand Canyon Comment 1. Further, intermittent fluctuations reaching the equivalent of historic low levels is not overdraft. Primary Elements 1 and 3 are included to monitor groundwater levels throughout the basin, and to operate in an ongoing manner to avoid overdraft. Finally, the statement that riparian conditions show signs of water deprivation is non-specific as to location and is otherwise unsubstantiated. Primary Elements 1 and 2 are included in the Plan to quantify the existence and extent of such conditions, if they occur, Primary Element 3 is included to avoid overdraft- related conditions of the type noted. | | PARTY | COMMENT | APPLICABLE GWMP
SECTION/
COMPLIANCE ¹ | RESPONSE | |--|---|--|---| | Sand Canyon
#8 | GWMP should include reports regarding water contamination from Robinson Ranch. City of Santa Clarita had stipulated that water quality adjacent to the golf course be monitored with results published in a report. | Primary Element 1 | See response to UWCD Comment 1 regarding extent of detail regarding occurrence of groundwater as framework for understanding the objectives and elements of the GWMP. As regards this comment, there is no documented groundwater contamination from Robinson Ranch, including that golf course. Required reports on Robinson Ranch have not shown any contamination as alleged in this comment. Monitoring in accordance with Primary Element 1 is intended to detect any groundwater contamination of the nature
alleged in this comment. | | Friends of
the Santa
Clara River
#1 | Disappointed that GWMP's primary goal is "Development of Local Groundwater for Water Supply" because other objectives should include protection of groundwater resources. | AB 3030 and AB 134. Section II of
GWMP. | See response to SCOPE Comment 7 above regarding lack of priority for all management objectives, and lack of "primary" status for "Development of Local Groundwater for Water Supply". | | Friends
#2 | GWMP should emphasize that paving of streams reduces recharge and should be avoided. Buffer zones around streams should be discussed. | This is not explicitly required by AB 3030 but relates to Primary Elements 3, 4 and 5 and Secondary Element 2. | See response to SCOPE Comments 4, 5 and 6. Further, given the importance of in-channel recharge to the yield of the Alluvium, a priority in implementation of the Plan can logically be expected to be avoidance of paving stream channels. | | Friends
#3 | Advisory Board should include representatives from environmental groups and county agencies. | Water Code Appendix § 103-
15.1(e)(2) | CLWA complied with the requirements of AB 134 regarding the composition of the Advisory Council. | | Santa Clarita
Sierra Club
Group
#1 | GWMP should include timelines for completion of components. | AB 3030 and AB 134. | Timelines are not required by AB 3030 or AB 134 | | PARTY | COMMENT | APPLICABLE GWMP
SECTION/
COMPLIANCE ¹ | RESPONSE | |-------------------|--|--|---| | Sierra Club
#2 | GWMP does not account for loss of groundwater from perchlorate contamination. "The numbers do not adequately represent the real water supply." | Primary Element 8; Water Code
§10753.8(j) | See response to SCOPE Comment 10 regarding the inactivation of wells impacted by perchlorate contamination. The inactivation of certain wells impacts pumping capacity until the wells can be reactivated, with treatment if necessary, or replaced. However, perchlorate contamination does not reduce the available yield of the aquifer system; hence, the numbers included in the GWMP accurately reflect the current state of water supply. | | Sierra Club
#3 | Loss of groundwater due to development
and pavement is not considered. GWMP
must address coordination of land use with
water necessities. | This is not explicitly required by AB 3030 but relates to Primary Elements 3, 4 and 5 and Secondary Element 2. | See responses to SCOPE Comments 4 and 6. Further, there has been no "loss" of groundwater due to development or pavement; groundwater conditions remain as generally described in Section III, with nearly constant water levels to the west and repetitive fluctuations to the east (see response to Sand Canyon Comment 1). | | Sierra Club
#4 | Drought planning is inadequate as it fails to take account of loss of primary water sources and reclaimed water. | Primary Element 3, 4, 5 and 7. | Drought planning is embedded in the GWMP in that the Plan is intended to result in groundwater management that ensures adequacy of groundwater supplies through both wet and dry (drought) hydrologic cycles. While "drought planning", per se, relates more specifically to overall water supply planning, of which groundwater is only one component, this Plan is intended to manage groundwater in such a way that it will be a reliable component of overall water supply through dry periods without being overdrafted on a long-term basis, e.g. through wet/normal periods that follow dry periods. Primary Elements 3, 4, 5 and 7 in the Plan relate to drought planning as well as parts of groundwater management through long-term fluctuations in hydrologic conditions. | | Sierra Club
#5 | GWMP does not adequately discuss maintaining river and tributary habitats. Sierra Club supports a citizen monitoring program for water quality. | This is not explicitly required by AB 3030 but does relate to Secondary Element 2. | See response to SCOPE Comment 5 and Friends Comment 2. | C:Documents and Settings/MaryLouC\Local Settings\Temporary Internet Files\OLK3A8\GWMP COMMENT MATRIX REVISED OCT 291.doc | PARTY | COMMENT | APPLICABLE GWMP
SECTION/
COMPLIANCE ¹ | RESPONSE | |-------------------------|---|--|--| | Sierra Club
#6 | CLWA should involve the public and other government and private entities in its water supply planning. | Water Code Appendix § 103-
15.1(e)(2) | CLWA complied with the requirements of AB 134 regarding the composition of the Advisory Council. | | Ed & Joan
Dunn
#1 | Concern because CLWA did not hold more public meetings before release of draft. Concern whether CLWA has regularly met with Advisory Board. | Water Code § 10753 et seq. | CLWA has complied with all requirements thus far regarding public meetings and gone beyond that legally required. | | Dunn
#2 | Doubt regarding replenishment of water in
the Alluvial Aquifer. | Primary Elements 3, 4 and 5 | Fundamentally, as discussed in the Plan, the long-term objectives for the basin include utilizing groundwater for water supply while not overdrafting the basin. As also discussed in the Plan, historically, in the western part of the basin there has been sufficient water for recharge to maintain an essentially full basin throughout both wet and dry hydrologic periods. Part of the reference to "sustain recharge" relates to that historical condition. Whether or not additional artificial recharge will be implemented in other parts of the basin, and what water sources might be used for such recharge, are to be addressed via implementation of the Plan, particularly Primary Elements 3, 4 and 5. | | Dunn
#3 | Doubt over Richard Slade's assertion as to
Alluvial Aquifer capacity. | This challenges evidence which the GWMP cites. | The analysis and determination of the storage capacity of the Alluvium has been exhaustively described in Slade's reports. The comment conveys no specific aspect of its "question"; the commentors are referred to Slade's reports, which address the storage calculations in proper technical detail. | | Dunn
#4 | GWMP should state that SWP water was interrupted for 6 months in 1991. Newspaper clipping is provided for this point. | Primary Elements 3, 4 and 5 | Primary Elements 3, 4 and 5 are included in the GWMP to ensure the maximum reliability of local groundwater in order to endure any future drought-related impacts on SWP deliveries, such as occurred in 1991. | | PARTY | COMMENT | APPLICABLE GWMP
SECTION/
COMPLIANCE ¹ | RESPONSE | |------------|---|--|--| | Dunn
#5 | Statement in GWMP that no wells exceeded DHS action level for perchlorate is false. Newspaper clippings provided. | Section III (Groundwater Quality) | The Plan has been revised to reflect that, while there remains no primary or secondary drinking water standard for perchlorate, and although only some of the detected concentrations of perchlorate in the Saugus wells exceeded the Action Level established by the State Department of Health Services at that time (18 ug/l), all those wells were inactivated by their respective owners after detection of perchlorate; those wells remain out of municipal water supply service since then. | | Dunn
#6 | Statement that perchlorate contamination has not reduced groundwater capacity is misleading. | Primary Element 8 | See response to SCOPE Comment 10 and Sierra Club Comment 2. | | Dunn
#7 | The Urban
Water Management Plan should not be referred to because it is under legal attack. | While it has been challenged, the
UWMP is still a valid document. | While it has been challenged, the UWMP is still a valid document and represents the current plan for urban water supply through its 20 year planning horizon. The Kern County Superior Court in February 2003 ruled completely in favor of the water suppliers in their defense of the UWMP litigation. The remaining petitioners have appealed. | | Dunn
#8 | The Saugus Formation does NOT underlie the entire CLWA service area. | Section I (Santa Clara River Valley
Groundwater Basin) | The text of the Plan has been revised to reflect that the Saugus Formation underlies much of the CLWA service area. | | Dunn
#9 | GWMP should state CLWA's inability to transport additional SWP to Santa Clarita Valley. | Section IV (Existing and Projected
Water Supplies) | CLWA does not have an inability to transport additional SWP water to the Santa Clarita Valley. Fundamentally, the comment is erroneous since the State conveys SWP water to CLWA's diversion points from Castaic Lake; from there CLWA has sufficient treatment and conveyance capacity for its current water demands, and is in the process of designing additional treatment plant capacity to treat and distribute additional water to accommodate projected increased demand. | | PARTY | COMMENT | APPLICABLE GWMP
SECTION/
COMPLIANCE ¹ | RESPONSE | |-------------|---|--|---| | Dunn
#10 | CLWA's recycled water program is for private business only, not public agencies. | Primary Element 7 | The recycled water program has no restrictions against use by public agencies. As described in Primary Element 7, the integration of recycled water to meet some non-potable demand is expected to decrease overall demand for potable water by up to 17,000 afy. As public agencies develop capabilities to utilize recycled water for non-potable uses, they are expected to reduce potable water demands by integrating recycled water into their overall water delivery systems. Finally, recycled water service to a specific user or area frees up potable water supplies for other users or areas, thus enhancing the reliability of the overall water supply of the Valley. | | Dunn
#11 | Groundwater production from both the
Alluvium and Saugus Formation is
overstated. | Section IV (Existing and Projected
Water Supplies) | The comment is unsubstantiated and includes no support in the form of records or other data to validate it. The historical use of groundwater reported in the Plan is based on a combination of metered pumping and indirect estimation of pumping based on metered power consumption and pump performance testing. There is no basis for claiming that reported groundwater production is "overstated". | | Dunn
#12 | CLWA should develop an emergency plan. | Primary Elements 3, 4 and 5 | Development of an emergency plan, presumably an emergency water supply plan, is beyond the scope of a GWMP. However, Primary Elements 3, 4 and 5 are intended to further develop both a regular and a dry year/emergency component of water supply from local groundwater. | | Dunn
#13 | Chart depicting SWP water received in 1991 is erroneous. Newspaper clipping provided. | Figure 4-1 | The final 1991 M&I allocation was 30% (October 1991). CLWA's M&I entitlement at that time was 41,500 af. The total amount made available to CLWA by DWR was 13,050 af. Since by October, CLWA and the retail purveyors had already instituted emergency operations, the entire amount was not used. | | PARTY | COMMENT | APPLICABLE GWMP
SECTION/
COMPLIANCE ¹ | RESPONSE | |--|--|--|--| | Dunn
#14 | Claim that CLWA meetings with retail water purveyors, the City, and UWCD have not occurred. | Primary Element 9 | The Commentors' lack of knowledge of such meetings does not mean they have not occurred. Appropriate documentation of such meetings, including presentation materials, discussion topics, and resultant work assignments, are maintained by meeting participants. | | Dunn
#15 | Secret meetings and secret reports related to
Primary Element 10 should not be included
as part of the GWMP. | Primary Element 10 | The preparation of the annual Water Reports does not indicate that any secret meetings have taken place. Previous Water Reports have been prepared, and future Water Reports are envisioned to be prepared with few, if any, meetings of any type; both public and private meetings have been convened to present and discuss the findings of the various Water Reports, and such meetings are intended to occur in the future for the same purpose. | | Dunn
#16 | CLWA should provide an accounting of water conserved. | N/A | Providing an accounting of water conserved is beyond the scope of the GWMP. More water sales are occurring through time due to increasing demand in the Valley. Water conservation measures result in water savings even though demand is increasing. | | Diane Trautman (City Planning Commissioner) #1 | What percentage of water demand will be drawn from local groundwater? | Primary Element 5 | In terms of groundwater management planning, projected urban water demand (the 106,000 afy projected urban demand in 2020) does not represent total valley-wide demand; total projected demand is 113,100 afy, including both urban and agricultural. In that light, on an average basis, local groundwater is expected to be utilized to meet about 40 percent of total water demand. | | PARTY | COMMENT | APPLICABLE GWMP
SECTION/
COMPLIANCE ¹ | RESPONSE | |----------------|---|--|--| | Trautman
#5 | Is CLWA sharing detailed information with the City of Santa Clarita regarding contamination risks in relation to existing closed wells? | Primary Element 9 | All publicly available information regarding the investigation of perchlorate contamination, its extent, its impact on water supply, and plans for cleanup, control of migration, etc. is available to the City. Representatives of CLWA and the purveyors meet routinely with City representatives to review the status of perchlorate cleanup and remediation activities. CLWA and the impacted water purveyors will continue to pursue control and cleanup of perchlorate contamination in order to restore impacted groundwater pumping capacity and to ensure the long-term quantity and quality of groundwater in accordance with the GWMP. As a practical matter, there are no surface contamination risks relating to perchlorate that would affect land use development adjacent to the impacted wells. | | Trautman
#6 | Where is the Stadium Well located? | Section IV (Groundwater Quality) | The Stadium Well is located on the south side of the Santa Clara River, approximately two miles upstream (east) of its confluence with the South Fork tributary, or about 4,000 feet east of the Bouquet Canyon Road crossing of the Santa Clara River. | | Trautman
#7 | Why isn't conservation a primary element (instead of secondary) since it may reduce water demand by 10%? | Secondary Element 1 | The assignment of "primary" or "secondary" status to any GWMP element is discretionary and certainly not absolute. Secondary status is not intended to indicate that any element of the GWMP will not be implemented; all elements are intended to be implemented. Final status of all GWMP elements will be reviewed by the Advisory Council and the CLWA Board. | | PARTY | COMMENT | APPLICABLE GWMP
SECTION/
COMPLIANCE ¹ | RESPONSE | |-----------------|---
--|---| | Trautman
#8 | How is CLWA delivering recycled water? | Primary Element 7 | Recycled water is being delivered to the TPC golf course, the first customer of the system, via the dedicated, recycled water distribution system, which is also capable of delivering water to other non-potable water users, and which will be expanded in accordance with the Draft Recycled Water Master Plan. The costs and time frame for expanding recycled water distribution and use are included in the Draft Recycled Water Master Plan, which is complementary to, but beyond the scope of the Groundwater Management Plan. The intent is to develop 17,000 afy of recycled water use by 2020. The capital cost of the complete system is estimated to be \$68 million, and will be funded through CLWA's connection fee program. | | Trautman
#9 | How is recycled water reprocessed? | Primary Element 7 | Recycled water is not "reprocessed" at points of use such at the TPC golf course. In general, recycled water is highly treated (tertiary treated) waste water. In the case of the Santa Clarita Valley, treatment already occurs at the Valencia Reclamation Plant operated by the Sanitation Districts of Los Angeles County. The treated water, ready for non-potable use, is distributed from the plant site in a dedicated transmission pipeline system to end users such as the TPC. Pesticide and fertilizer uses, as part of cultural practices at end-user locations such as golf courses, are discretionary actions of the respective end users of recycled water. | | Trautman
#10 | What is the average per capita water usage? | N/A | Most water agencies no longer use "per capita" water use as a standard because it is not an accurate representation of actual per person water use, mainly due to the effects of landscape and commercial/industrial water use. (It is also expressed in "gallons per day," rather than "acre-feet per year," since it refers to individual water usage.) In general for the South Coast hydrologic region of California, water use is approximately 200 gallons per person per day (DWR Bulletin 160-98). Per capita use for the Santa Clarita Valley is slightly higher due to landscape irrigation demands caused by local climatic conditions. | | PARTY | COMMENT | APPLICABLE GWMP
SECTION/
COMPLIANCE ¹ | RESPONSE | |-----------------|---|--|--| | Trautman
#11 | The Semitropic Water Bank/Transfer is not mentioned in discussion of the Supplemental (SWP) Surface Water on page 21. Is that because it is a relatively short-term water supply? Are any of the other water transfers – Kern Water Bank, Kern Delta Water, North Las Posas Water Bank – as listed on UWMP p. 2-16, of limited duration? And if the Semitropic Water Bank Transfer is short term, how can it be included in the 105,000 – 106,000 afy need projected for the next 20 years? What will take its place? | Section IV (Existing and Projected
Supplies) | The SWP is referred to as "supplemental" water because that is the original purpose of the SWP: to serve as a supply that would "supplement" local supplies (whether groundwater or local surface water or both). The specific amounts referred to in the GWMP are from the contractual terms between CLWA and the California Department of Water Resources. The water banked in the Semitropic Water Storage Program during 2002 is a short-term, dry period supply. The program has a term of ten years (i.e., the water must be returned to CLWA for use in its service area within that time period). Thus it is not included as a supply for long-term needs. However, the other programs listed in the UWMP (most of which, by the way, are not water "transfers," but are instead groundwater banking programs) are long-term sources of supply. CLWA is in the process of designing and implementing a Long-Term Reliability Plan to begin bringing such long-term programs on line as a means to store water available in wet years, for use in later dry years. CEQA analysis, with its accompanying public comment opportunities, will be part of the long-term reliability program | | Trautman
#12 | What specific efforts will be made to manage salinity? | Primary Element 6 | Primary Element 6 – Long Term Salinity Management is included in the GWMP for the reasons presented in the text discussion of that element. The element recognizes the need to plan for salinity management but also recognizes that, to the present, there has been no extraordinary trend of salinity increase. Hence, there are no specific efforts currently in place to "manage" salinity. It is envisioned that specific efforts will be developed over time in response to implementation of the GWMP and, in particular, its Primary Element 6. CLWA is participating in efforts by the Sanitation Districts of Los Angeles County to address the Los Angeles Regional Water Quality Control Board's proposed TMDL standard for chloride in the Santa Clara River. This effort is separate from and beyond the scope of the Groundwater Management Plan. | Board of Directors FW. Filchardson, President Sholdon G. Berger, Vice President Roger Orr, Secretary/Treasurer Oaniel C. Naumann Bruce Oandy Lynn Mauthardt Robert Cranio Layal Counsel Philip C. Drosphor General Managor Dana L. Wisenart ### UNITED WATER CONSERVATION DISTRICT "Conserving Water Since 1927" August 7, 2003 Dan Masnada Castaic Lake Water Agency 27234 Bouquet Canyon Road Santa Clarita, CA 91350 Re: Response on Draft Groundwater Management Plan, Santa Clara River Valley Groundwater Basin, East Sub-basin Thank you for giving us the opportunity to review and comment on your Draft Groundwater Management Plan, Santa Clara River Valley Groundwater Basin, East Sub-hasin. United Water considers this plan as one piece of a broader effort at groundwater management that is being accomplished as part of the Memorandum of Understanding between United Water and water purveyors in the Santa Clarita area. We offer some specific comments and suggestions for your consideration. ### Comments include: Figure 3-2. The vertical and horizontal scales associated with the hydrographs are very difficult to read. The T4N/R17W, Section 22 well, in the western arm of the Alluvial Aquifer does not show data from approximately 1983 through 1991. In previous reports and analyses, the NLF #C5 well was used for this area. This well depicted variable groundwater levels for the period from the mid-1980s to the early 1990s. Because this is the discharge area of the Alluvial Aquifer to the Santa Clara River, we need to understand the response of the system to the onset of agricultural pumping in this area in the mid-1980s. The T4N/R17W, Section 22 well does not possess the data needed to show that response; Page 15. The comment near the top of the page that "over the last 35 years, groundwater quality in the Saugus has remained generally constant" would be more supportable if it was accompanied by a groundwater quality map similar to Figure 3-3, with a few groundwater quality time-series specific to the Saugus Formation; Figure 5-3. The average daily mean streamflow data appears to be shifted one year on the histogram graph. As an example to show the error, the histograms suggest that there were high flow years in 1968 and 1997. The high flow years were actually 1969 and 1998; ### UNITED WATER CONSERVATION DISTRICT Page 21. Local Groundwater. The planned production of 30,000 to 40,000 acre-feet per year from the Alluvial Aquifer and 7,500 to 15,000 acre-feet per year from the Saugus Formation, along
with 10,000 to 20,000 acre-feet per year from the Saugus in dry years, has yet to be implemented. The current development of a regional transient groundwater flow model for the East Sub-basin is for the expressed purpose of evaluating the potential impacts to the basin and surface water outflow into Ventura County, to this increased pumping. Irrespective of the modeling results, only real groundwater and surface water data can verify the influence of significantly increased pumping within the sub-basin; and Page 26, Primary Element 2 – Monitoring and Management of Surface Water Flows and Quality. While imported SWP water no doubt contributes to the observed increased flow in the Santa Clara River at the Ventura County line, there exist additional explanations for a portion of the increased flow. Other considerations include: - 1. Influence of the hydrologic cycle. The cumulative departure for precipitation was declining during the 1950s and first half of the 1960s. The cumulative departure improved significantly during the period of 1978 through 1986; and - 2. The amount of Alluvial Aquifer pumping may influence flow at the Ventura County line. During the latter half of the 1960s and through the 1970s, groundwater pumping of the Alluvial Aquifer declined by 70%. Pumping during the 1980s was 30% lower than during the 1950s and early 1960s. In this particular case, it would be very difficult to differentiate between the influence on streamflow from changes to groundwater pumping and the hydrologic changes. If you have any questions about United Water's comments, please contact Steve Bachman at (805) 525-4431. Dana L. Wisehart General Manager Laborhact cc: BRRF Lowell Preston, Ph.D., Ventura County Water Resources Division ### SCOPE ### Santa Clarita Organization for Planning and the Environment TO PROMOTE, PROTECT AND PRESERVE THE ENVIRONMENT, ECOLOGY AND QUALITY OF LIFE IN THE SANTA CLARITA VALLEY POST OFFICE BOX 1182, SANTA CLARITA, CA 91386 8-6-03 Castaic Lake Water Agency 27234 Bouquet Cyn Rd. Santa Clarita, Ca. 91350 Faxed to 661 297 1611 Hard copy to follow via regular mail Re: Comments on Ground Water Management Plan Dear Sirs: Thank-you for the opportunity to comment on your plan. We are pleased that your agency has begun a ground water management plan in response to the community's concerns over the excessive use of ground water. This extensive pumping and lack of protection of re-charge areas has resulted in almost complete elimination of surface flows and summer ponding necessary to wildlife as well as causing water level drops in wells that have resulted in water quality and availability problems for small users. ### General Areas of Concern We regret that environmental organizations, small well owners, the City of Santa Clarita, the County of Los Angeles (watershed and flood control divisions), Regional Water Quality Control and other members of the community interested in water issues in our valley were not included on your advisory board. We believe that inclusion of these groups early on would have helped resolved some of the issues with your plan at an earlier stage. Including only the water companies, Newhall Land and Robinson Ranch effectively excluded many of the groups and individuals that have voiced strong concerns over your present actions. The water agencies have consistently excluded these groups from all water planning, including water supply reports and the Urban Water Management Plan process. We strongly suggest that a more inclusive committee be formed to include representatives of the environmental community and rural well owners who are now being affected by overdraft of the Santa Clara River. We also note that there are no timelines for completion of any of the components of the plan. Without such timelines, it would seem that there is little real intention or commitment to follow through on the various parts of the plan. ## The Land Use/Wellhead Protection Component of the Groundwater Management Plan Perhaps the most significant out come of a ground water management plan in the Santa Clarita Valley would be implementation of the portion of Section 10753 which requires review of land use plans and coordination with land use agencies. Your plan assigns this area to "secondary element 2", an indication that you do not intend to pay much attention to this important component. The coordination of land use and water planning has been sadly lacking in the Santa Clarita Valley. A simple wellhead protection plan would help decision makers understand the potentially polluting impacts of certain land uses such as gas stations, auto repair shops, etc. and how they could negatively affect our water supply. Instead, these uses are routinely permitted next to water supply wells. Paving over of prime re-charge areas is allowed without a word of protest from the water agencies, even though such loss of recharge capacity will severely affect water availability. Recreational uses should be encouraged in recharge areas that will accommodate and perhaps even enhance water re-charge and thus increase water availability. Newhall County Water District began a well head protection program and educational presentations with its ground water management plan in the mid 90's, but efforts to both educate the planners and protect re-charge and water supply wells have been stifled by the strong developer involvement with water agency decisions. This involvement has precluded advocacy of long term decisions that would protect water availability and water quality in favor of short term profits for development companies. The ground water management plan should stress the importance of avoiding the concreting of tributaries when approving new land uses and require adequate set back from natural water courses to allow those blue line streams to remain in a natural state. This will enhance water re-charge (and thus, ensure water availability). It will also aid water quality because riparian vegetation absorbs many pollutants before they can enter the ground water system. It is an indication of the myopic view of the water agencies that this plan states its number one goal to be "Development of Local Groundwater for Water Supply". There are many other uses of ground water and surface water which are important to the community. These include recreational and aesthetic values, biological value and the quality of the water supply. More pumping will result in diminution of all these other aspects of our ground water resource and ignore the strong protests and demands for their protection which are already being heard from many voices in the community. ## Monitoring of Ground Water and Surface to Establish Safe Yield ### Agricultural Water Usage is Overestimated In its presentation, Luhdroff and Scalmanini revise the previous perennial yield estimate of the Santa Clara River by Richard Slade (perennial yield 32,000 AF, Hydrology of the Alluvial Sediments of the Santa Clara River, 1988, page 109) to approximately 40,000 AF. This revision is based in part on an average agricultural usage from the 1940s to the 1960s. We believe that these calculations are incorrect for three reasons. 1. No inclusion of recharge from agricultural run off was included in the usage calculations as was included in previous reports. Agricultural run-off was a substantial source of re-charge to the river that no longer exists, therefore not as much water is available for extraction. - 2. Agricultural withdrawal was not metered, so water usage is merely an estimate based on crops and weather. It appears that estimates of withdrawals may have been over-stated. - 3. Agricultural lands provided a source of re-charge during wet years. Urbanization has paved over most of this area, so re-charge is no longer occurring. This will reduce that amount of recharge to the river alluvium and thus reduce the amount available for extraction. (Slade, 1988, Hydrological Investigation of the Perennial Yield of the Alluvial Aquifer, page 88) These evaluation errors have caused the water companies to believe that they can withdraw a higher amount of water than can actually occur without causing impacts to public trust matters and small well users ### Monitoring and Managing Surface Water Flows ### Visual Historical Evidence has been ignored There are numerous records and observations by long-time residents indicating that surface flow usually occurred year round. Ponding that harbored fish and amphibians (many of which are listed as threatened or endangered) in areas that did not support year round flow has also been attested to by local residents. The disappearance of year-round flows and ponding is an indication of overdraft of the alluvial system. The impacts to riparian life and water quality are substantial. A goal of returning or replacing these summer surface waters should be incorporated in your plan. Such replacement may help to avoid potential future litigation brought to enforce the Endangered Species Act. ### Water Quality Monitoring ### Water Pollution We appreciate that the water agencies have finally admitted that 5 municipal wells are closed and that there is a concern that the pollution plume is moving in a westerly direction (Plan at page 32). It is very regrettable that these facts were not disclosed to decision makers over the past several years and, further, were even denied by representatives of the water agencies. However, we believe it is imperative that this plan additionally include a disclosure of the current reduction in production capability due to pollution of the Saugus and alluvial aquifer by ammonium perchlorate. Continued pumping may extend the pollution plume and increase clean-up costs. It is important that the extent of the problem be honestly outlined for the public so that alternative remedies may be devised and discussed. Failure to disclose the extent of the pollution problem and its real impact may lead to serious water
quality problems if the Saugus aquifer is relied upon for drought supply. ### **Conclusion** We submit the following recommendations 1. We encourage CLWA to re-form its advisory committee to be inclusive of the community and other local agencies. - 2. We suggest that the goals of the plan be re-ordered to place land use issues in a position of significance, and include recommendations from other agencies, organizations and individuals that might enhance water availability and water quality. - 3. A time line must be established, financial commitment discussed and responsibility assigned so that the water management goals will actually be attained. Sincerely Pat Saletore Cc: City of Santa Clarita County of Los Angeles Regional Water Quality Control Board Local Newspapers Set Seletone ### Sand Canyon Area Well Owners Association c/o 27363 Sand Canyon Road Santa Clarita, CA 91387-3632 August 8, 2003 Castaic Lake Water Agency 27234 Bouquet Canyon Road Santa Clarita, CA 91350-2173 RE: Groundwater Management Plan ("AB 3030 Plan") ### Gentlemen: This letter is in response to your letter of June 16, 2003 which solicited comments about the above plan to ensure that the general public has had the opportunity to provide input on this local effort to manage our community's groundwater resources. We are pleased to respond to your request for public participation. As well using residents of the Sand Canyon area who are affected by ground water use and plans for future use of it, we feel that our interests are very much at stake in determining how our river and ground water is to be used. Our first and foremost concerns are that both river and ground water is being extensively pumped and that recharge areas are not being adequately protected. Surface flows and summer ponds have virtually vanished from our vicinity. In 1997, the water level in four wells adjacent to Sand Canyon Creek stood at twelve feet. As of last month, those same wells' water level now stands at ninety-three feet. Other general concerns include the lack of representation on your advisory board by rural well owners. While water companies and the Robinson Ranch Golf Course have their own interests in how our community's water resources are used, many small well users have an equally valid interest in seeing that our area's water resources are managed in an equitable fashion that ensures no entity's use will result in the deprivation of others. Also, none of we Sand Canyon area small well users have been consulted during the creation of water supply reports or the Urban Water Management Plan, despite the fact we are being affected by an increasingly serious overdraft of the Santa Clara River. Including members of our group in a groundwater management committee will bring important stakeholders to the planning process. We have important data to present. It is disappointing to note that the ground water management plan specifies no timelines or dates for executing and completing its phases. We question whether there is sincere intent to carry out the plan given the lack of work plan. On a broader scale, we are deeply concerned about the plan's land use and wellhead protection sections. Section 10753 calls for a review of land us plans and coordination with land use agencies, as stipulated in secondary element 2 of the plan. A critically important aspect of effective ground water management, such coordination has not taken place to any meaningful extent in the Santa Clarita Valley, and more specifically, in the Sand Canyon area. We have noted with dismay that vital recharge areas have been built upon and paved over with no comment from any water agencies, despite an obvious impact on water availability for all water users, particularly small well holders. While intelligently planned development is meant to result in well designed, livable communities where all inhabitants are assured of fair access to resources, we note that ongoing strong developer involvement with water agency decisions has led to the potential compromise of water availability and quality in exchange for near term profits for developers and increased tax revenues for local governments. In the draft plan's sections that deal with ground water monitoring to establish a safe yield, we believe that estimates of agricultural water consumption are not accurate. In Richard Slade's 1988 perennial yield estimate of the Santa Clara River, he stated on page 109 that it was approximately 32,000 acre-feet. Yet Luhdroff and Scalmanini raise this estimate to 40,000 acre-feet. They base their calculations on data measured for agricultural operations between the 1940's and 1960's. Since our membership includes individuals who have farmed a large parcel in the Sand Canyon area from 1951, we feel qualified to comment on the above figures. First, agricultural usage during the reference years was never metered. Usage during this period is estimated based on available crop reports (when they were recorded) and available weather data. A reading of withdrawal estimates raises a suspicion that they are overstated. Second, the upward revision of Slade does not include agricultural runoff. Since agriculture in our area has virtually disappeared, it is no longer a contributing factor to aquifer recharge. Yet earlier estimates included agricultural runoff, a significant source of recharge. Third, land in our area that previously was planted in both irrigated and dry land crops has now been paved over. During rainy years, farm fields were an important component of recharge, since rain soaked into them. Slade specifically mentions this reduction of extractable water on page 88 of his 1988 report. Flawed calculations like these have caused water companies and other institutional users to think that they can extract more water than they can and should without adversely affecting small well users. Primary element number two gives the appearance of an attempt to establish a commingled interrelationship between the Saugus Formation and the Santa Clara River. With a clearly defined bed and banks, the Santa Clara River has historically behaved as a river, and despite severe depletion from over pumping, still exhibits the dynamics of a river during episodes of precipitation. With our members holding rights of diversion from the State Water Resources Board, we strongly feel that any attempt to define the river in terms of percolating groundwater defies logic and the laws of physics. Also, in the "Existing and Projected Water Supplies" section, the draft report states that "...it is currently expected that ongoing utilization of local groundwater will continue to be in amounts that have historically been pumped, 30,000 to 40,000 afy from the Alluvium..." As stated above, Slade's 1988 report clearly and unequivocally sets the upper pumping limit of the Santa Clara flow at 32,000 afy. By relying on generous overstatements and exaggerated potentials, a plan will go forward that will have serious negative impacts for small well users in the Sand Canyon area. In primary element three, Determination of Basin Yield and Avoidance of Overdraft, we are concerned with the second paragraph's first sentence that states "...there has not been any widespread, steady degradation of groundwater conditions that might be indicative of overdraft..." Again in Primary Element 4, the second sentence asserts..."Both ranges of numbers are consistent with recent historical pumping that has not resulted in any indication of overdraft or other undesirable conditions." And in Primary Element 5, the third sentence further posits that ... "Groundwater pumping has remained within a range that has not caused any evidence of overdraft, or associated undesirable impacts..." It is the direct and incontrovertible evidence of water levels in our own wells that presents us with a clear contradiction to this assertion. Based on members' records that cover a fifty-year span, the current water levels in our wells have reached an unprecedented low. We are left with inescapable evidence that large users pumping from the Santa Clara River have contributed to a cone of depression that is negatively affecting our small wells. In addition, riparian conditions along the tributaries and main channel of the Santa Clara River reflect highly stressed, water deprived environments. In areas away from river feeder creeks, some heritage California Coastal Oaks (Quericus Agrifolia) have begun showing signs of water deprivation. In a related matter, the proposed plan calls for identification of potential sources of contamination to assure water quality. When Robinson Ranch Golf Course was granted permission to open and operate, the city stipulated that water quality adjacent to and on the golf course be monitored and that regular reports about it be published. These reports have not been included in the draft plan, despite the fact that Robinson Ranch is a participant on the advisory committee for this draft plan. Pesticide, insecticide, fertilizer, and other volatile organic compounds are all possible runoff and plume contaminants that may be leaching from the golf course. As members of your advisory committee, we would be glad to share with others the data from five decades of small well usage. We believe that recent developments, specifically in our area, have seriously lowered both the alluvial water levels to historic levels. While modeling, projection, and prediction can yield abstract theories, we small well users must live with the consequences of miscalculation, however unintentional or inadvertent. Small well holders are franchised, integral, entitled members of the water using community, and as such, must be included in the planning process associated with any groundwater management plan that is to be implemented in the Santa Clarita Valley. Primary element nine specifies a MOU (Memorandum of Understanding) executed between the United Water Conservation District in Ventura
County as an example of..."a local agency relationship that has produced the beginnings of local groundwater management, now embodied in this comprehensive (sic) plan..." While we laud all attempts to widen the base of data and participation in the planning process for water resources, we are disappointed that as stakeholders in the Eastern Sub-basin of the Santa Clara River Valley, our interests are not being represented on the advisory committee that has been created to direct the groundwater management plan. We ask to be included in the planning committee that is helping to shape the future of water use in our community. Respectfully, The Sand Canyon Area Well Owners Association Robert and Jane Fleck Eugene and Marylou Ruddell Richard and Leslie Christensen Shawn Clement Joan Waldman ### Friends of the Santa Clara River 660 Randy Drive, Newbury Park, California 91320-3036 • (805) 498-4323 August 7, 2003 AUG 0 8 2003 Castaic Lake Water Agency 27234 Bouquet Canyon Road Santa Clarita, CA 91350 Re: Groundwater Management Plan Dear Sirs, Friends of the Santa Clara River submits the following comments on the June 2003 Draft Groundwater Management Plan (Plan). We are disappointed and dismayed that the Plan sets as its primary goal the "Development of Local Groundwater for Water Supply". While providing adequate water supplies is an important objective, it would seem to us that the primary goal should be the long-term protection of local groundwater resources, including groundwater quality. Groundwater resources provide many benefits to the community, including those related to the biological and environmental health of the river corridor. Long-term protection, if implemented, should curtail the over-pumping of local aquifers which is currently occuring. We are also concerned that water agencies, in general, have failed to weigh-in on the paving over of recharge areas in the Santa Clarita Valley. Loss of recharge could have very substantial impacts on future water availability. The Plan should emphasize that concreting of ephemeral tributary streams reduces recharge, and thus should be avoided. Adequate setbacks, or buffer zones, around major streams should be stressed - an item that is rarely adequately addressed in development projects. The Plan advisory board is too narrowly constituted. The Regional Water Quality Control Board should be represented, as should environmental groups and county agencies working on watershed protection. Thank you for the opportunity to comment. Sincerely, . * **Board of Directors** Ron Bottorff Chair Barbara Wampole Vice-Chair Lynne Plambeck Treasurer Jo Rogers Secretary Affiliated Organizations California Native Plant Society L.A./Santa Monica Mountains Chapter Santa Clarita Organization for Planning the Environment (SCOPE) Sierra Club Angeles Chapter Los Padres Chapter Surfrider Foundation Audubon Society Ventura Chapter Ventura County Environmental Coalition Ron Bottorff, Chair Attention: CLWA Directors August 8, 2003 RE: Comments on Ground Water Management Plan FAX: (661) - 297-1611 From: Henry Schultz Phone: (661) 284-5613 or (805) 447-2863 (work) or FAX at (805) 480-1333 Email: hschultz@amgen.com, henry50@pacbell.net Three pages total: There follow 2 pages of comments on the water plan. If there are any questions I can be contacted at the above locations. Henry Schultz Chair, Santa Clarita Sierra Club Group 8/7/03 Castaic Lake Water Agency 272234 Bouquet Canyon Rd Santa Clarita, CA 91350 FAX: 661-297-1611 RE: Ground Water Management Plan Comments Dear Directors: We appreciate the chance to comment on the ground water management plan. This plan has been a long time in the making. We hope that your response to concerned public input will make it a viable document. A few comments follow. - 1. Based on the (too) long history of this plan, it is essential to include deadlines (with penalties for failure) for completion of the various components of the plan. Otherwise our water will just slip away. - 2. There is no accounting for loss of groundwater from pollution such as perchlorates. As soon as the magnitude of the problem has been adequately determined, a realistic plan can then be implemented. As it stands right now, the numbers do not adequately represent the real water supply. - 3. Loss of groundwater due to loss of percolation due to extensive development, which paves over permeable soil, is not considered. It is a continuous and cumulative impact on the water supply. More generally, the water plan must address coordination of land use with water necessities such as the preservation of water percolation basins and similar amenities. - 4. Drought planning is inadequate in the plan. For example, if a water treatment plant is built, then a certain number of acre/ft of water can be reclaimed. Current planning would say that this is real water, which can be counted on. In a drought, not only do you lose primary water sources, but also the corresponding amount of reclaimed water, a double hit which must be accounted for in any realistic water plan. - 5. The Sierra Club strongly supports an active river-monitoring program so that potential and existing water quality issues can be addressed in a timely manner. This must be an integral part of the plan. In lieu of the water agency producing reliable data, a citizen-monitoring program will have to be undertaken to assure the quality of our water. - 6. The plan does not adequately discuss maintaining river and tributary habitats such as the biological unhealthy zones created from the Rio Vista Plant's outflow into the Santa Clara River. While there are green plants growing in the area, UCLA researchers have shown that it is barren of many insects, which would normally be present in such an environment. This engenders a ripple effect in the biota. 7. Just as the City of Santa Clarita involves the public and other government and private agencies in its long range planning, CLWA should do the same with its water planning. People in the Santa Clarita Valley are just beginning to realize the importance and the fragility of their water supply. The time to start REAL planning is now. Thanks for your kind attention. Henry Schultz Chair, Santa Clarita Sierra Club Group 21827 Parvin Dr. Santa Clarita, CA 91350 Henry50@pacbell.net 661-284-5613 Ed & Joan Dunn 15414 Rhododendron Dr. Canyon Country, CA 91387 August 8, 2003 Castaic Lake Water Agency 27234 Bouquet Canyon Road Santa Clarita, CA 91350-2173 RE: Groundwater Management Plan (AB 3030) Dear Sirs: We are pleased to have the opportunity to comment on your draft AB 3030 Plan. Enclosed please find copies of individual pages of this plan and associated comments for these pages. We are disappointed that the writing of this plan appears to be following the same path of the UWMP. We are also displeased there has not been an attempt to hold more public meetings prior to this draft release. As required in AB 134, when has the agency met regularly with the advisory council to consult on this plan? What was the frequency of the meetings and how many were there? We are quite interested in an AB 3030 Plan and would appreciated this draft be made into an honest and truthful document, allowing it to go ahead on a timely schedule without challenges and delays. Respectly submitted, Ed and Joan Dunn Enclosures: 3 Exhibits, 16 draft groundwater pages and 16 associated comment pages Top of page: Basin objective "manage groundwater levels and discharge to the Santa Clara River, at the west end of the basin"? Wording should include "the entire basin". Bottom paragraph, last sentence: The plan is replenishing the aquifer with WHAT sufficient water? and effects, e.g. chronic water level decline, loss of groundwater storage, onset of land subsidence, groundwater quality degradation, a corresponding basin objective is to manage groundwater levels and associated groundwater discharge to the Santa Clara River at the west end of the basin, and thus not adversely impact surface and groundwater discharges to the downstream basin(s). - 3. Preservation of groundwater quality for beneficial use in the basin, and for beneficial use of surface water and groundwater discharges from the basin. Included in this management goal will be the active characterization and solution of any groundwater contamination problems, through cooperation with responsible parties or through independent action if timely action by responsible parties is not forthcoming and the preceding management objectives are thereby impacted or constrained. - 4. Preservation of interrelated surface water resources. Included in this management goal will be the maintenance of appropriate surface water flows and non-degradation of surface water quality as a result of managing groundwater conditions to meet the other management goals for the basin. Quantitatively, the preceding goals translate into general preservation of groundwater levels and quality in the Alluvial aquifer system consistent with the last 30 years, including fluctuations through seasonal demands and local hydrologic variations (wet and dry periods). As discussed in more detail in the next chapter, the hydrogeologic setting in the area has resulted in smaller Alluvial groundwater level fluctuations toward the western half of the basin (generally west of Bouquet Canyon), and larger fluctuations to the east. However, largely due in part to the importation of supplemental surface water over the last 20 years, and the integrated or conjunctive use of that supplemental water with local groundwater, there has been no chronic decline in groundwater levels or storage. A continuation of such basin conditions, possibly complemented by management actions to decrease the historical water level fluctuations in the eastern part of the basin, will accomplish the second basin objective, continued avoidance of overdraft as has been the ongoing historical condition in the basin, while continuing to utilize local
groundwater to meet part of projected water requirements, the latter being the first management objective for the basin. Corresponding management actions to sustain recharge and not overdraft groundwater storage will accomplish the third basin objective by replenishing the aquifer system with sufficient water to sustain what has been generally consistent quality of groundwater on a long-term basis. Plan, page #10 Dunn, page3 We question Slades 1986 and 2002 Report stating the alluvium has the capacity of 240,000 acre feet. ### III. Groundwater Basin Conditions #### Occurrence of Groundwater Groundwater in the Santa Clara River Valley East groundwater subbasin occurs in two aquifer systems, the Alluvium associated with the Santa Clara River and its tributaries, and the Saugus Formation. There are also some scattered outcrops of Terrace deposits in the basin that likely have the capacity to contain limited amounts of groundwater; however, since these deposits are located in limited areas that are situated at elevations above the regional water table and are also of limited thickness, they are of no practical significance as aquifers and have consequently not been developed for water supply. The Alluvial aquifer system, of Quaternary to Holocene (Recent) geologic age, consists primarily of stream channel and flood plain deposits of the Santa Clara River and its tributaries. The Alluvium is deepest along the center of the present river channel, with a maximum thickness of about 200 feet near the area known as Saugus. It thins toward the flanks of the adjoining hills and toward the eastern and western boundaries of the basin and, in the tributaries, becomes a mere veneer in their upper reaches. The spatial extent of the Alluvium throughout the basin is illustrated in Figure 3-1. The Alluvium is the most permeable of the local aquifer units. Based on well yields and aquifer testing, transmissivity values in the range of 50,000 to 500,000 gallons per day per foot (gpd/ft) have been reported for the Alluvium, with the higher values where the Alluvium is thickest in the center of the valley and generally west of Bouquet Canyon (Slade 1986 & 2002). The amount of groundwater in storage can vary considerably because of the effects of recharge, discharge, and pumping from the aquifer. The maximum storage capacity of the Alluvium has been estimated to be about 240,000 acre-feet (af) (Slade, 1986 & 2002). The Saugus Formation, of Pliocene to Pleistocene geologic age, has traditionally been divided into two stratigraphic units: the lowermost, geologically older Sunshine Ranch member, which is of mixed marine to terrestrial (non-marine) origin; and the overlying, of upper, portion of the Formation which is entirely terrestrial in origin. The Sunshine Ranch Member of the Saugus Formation has a maximum thickness of about 3,000 to 3,500 feet in the central part of the valley; Top, bottom of first paragraph: The plan states "the most significant period of Saugus pumpage was 1991 through 1994, when pumpage ranged from 10,600 afy to nearly 15,000 afy and averaged over 12,000 afy, during which time SWP water deliveries were reduced at the end of extended drought conditions". It should be stated that the SWP water was INTERRUPTED for approximately 6 months. See Feb. 27,1991 Daily News newspaper article "Santa Clarita will turn to wells as state water supplies dry up". As stated in the article, the SWP water processing plant was shut down. Exhibit A. "Officials say state's water delivery system inadequate". See Exhibit B Since 1980, total pumpage from the Saugus Formation has ranged between about 3,850 afy and nearly 15,000 afy; average pumpage over that period has been about 6,900 afy. The great majority of pumpage from the Saugus is for municipal supply (nearly 6,300 afy, or 92 percent, on average). For comparison, although historical Saugus pumping records prior to 1980 are limited, there appears to have been essentially no pumping from the Saugus prior to 1960 (on the order of about 100 af in most years, beginning in 1948), and some increased pumping for agricultural water supply beginning in about 1962 (about 900 af). The largest amount of agricultural pumping from the Saugus was during the mid-1960's, when annual Saugus pumpage was about 3,000 af. Agricultural pumping from the Saugus declined to near zero by the late 1970's, but has been generally in the 500 to 1,000 afy range since 1982. There was no Saugus pumpage for municipal supply in the early 1960's; limited data suggests that municipal pumping from the Saugus began in the 1970's, and reached nearly 5,000 afy by 1980-81. The most significant period of Saugus pumpage was 1991 through 1994, when pumpage ranged from 10,600 afy to nearly 15,000 afy and averaged over 12,000 afy, during which time SWP water deliveries were reduced at the end of extended drought conditions. #### Groundwater Monitoring Network and Program There is no formal groundwater monitoring network of wells for groundwater level measurements and/or groundwater quality sampling in the basin. Consequently, one component of this Plan is to formalize both a network of wells for groundwater monitoring and a program for water level measurements, water quality sampling, and other pertinent groundwater data collection (Primary Plan Element 1). Despite the lack of an existing formal groundwater monitoring network and program, however, there is a significant amount of historical groundwater data, some of which dates back into the 1940's, on which to base reasonable assessments of groundwater conditions in the basin. For example, groundwater level measurements have been made over varying periods of record in a total of 154 wells, mostly alluvial wells, throughout the basin. Similarly, groundwater quality data, consisting of varying numbers of constituents analyzed, are available from some wells, but a much smaller number than is the case for groundwater level data. These data, along with direct measurements or indirect estimates of pumpage, primarily from high capacity municipal and agricultural wells, allow for analysis of groundwater basin conditions, as discussed in this Plan, and also provide the bases on which a groundwater model can be developed (Primary Plan Element 3) and on which various management criteria such as operational yield, baseline groundwater quality, etc. can be determined (Primary Plan Elements 3, 6 etc.). Middle paragraph: "Exceedence of action level of perchlorate". Newhall County Water District perchlorate level was 19 micro-grams per liter and Santa Clarita Water Co. was 24 or more micro-grams per liter. Dunn, page 5 The statement that none (no wells) exceeded 18 micro-grams per liter is false. See Exhibit C higher quality (low TDS) water and dry periods have resulted in the notable declines in water levels described above, with a corresponding increase in TDS (and individual component constituents) in the deeper parts of the Alluvium. Due to a much more limited number of wells and the limited spatial extent of groundwater development in the Saugus Formation, long-term Saugus groundwater quality data are not sufficiently extensive to permit any sort of basin-wide analysis or assessment of pumping-related impacts on quality. Based on the most complete historical record, over the last 35 years, however, groundwater quality in the Saugus has remained generally constant, and the Saugus Formation is, on a groundwater quality basis, a viable agricultural and municipal water supply. The most notable groundwater quality issue in the basin centers around the detection and impact of perchlorate on several Saugus wells and one Alluvial well in the central part of the basin near the location of the former Whittaker Bermite facility, which is immediately southeast of the confluence of the main Santa Clara River and its South Fork tributary. In 1997, routine water quality sampling detected the presence of perchlorate in four municipal wells completed in the Saugus Formation (CLWA Santa Clarita Water Division Saugus Wells 1 and 2, Newhall County Water District Well 11, and Valencia Water Company Well 157). While there remains no primary or secondary drinking water standard for perchlorate, and although the detected concentrations of perchlorate in the Saugus wells did not exceed the Action Level established by the State Department of Health Services at that time (18 ug/l), all those wells were inactivated by their respective owners after detection of perchlorate; those wells remain out of municipal water supply service to date. More recently, in late 2002, routine water quality sampling of Alluvial wells detected perchlorate in one of them (CLWA Santa Clarita Water Division Stadium Well) at a concentration which slightly exceeds the current Action Level (4 ug/l). This well has also been voluntarily inactivated, and thus remains removed from municipal water supply service. This Plan, notably through Primary Plan Elements 1, 6 and 8, is intended to incorporate both short-term and long-term groundwater quality considerations in the management of the groundwater basin in order to formalize groundwater quality monitoring and assessment, to investigate and correct groundwater contamination problems, and to preserve or improve groundwater quality for ongoing water supply as well as for avoiding adverse water quality impacts on interconnected surface waters. ### Paragraph #2: The statement of this paragraph is misleading. The correction should show "out of service wells significantly reduced groundwater capacity for existing groundwater supplies, so much so, that a substantial increase of state water use, has been initiated". #### Areas of Concern and Identified Problems A number of concerns have been expressed about groundwater conditions in the basin. While not all of the expressed concerns have been substantiated, they are listed and briefly discussed here, and they are addressed in the management objectives
for the basin, intended to be achieved via implementation of the various primary and secondary elements in this Plan. The most notable concern in the basin, at least at present, is the impact of perchlorate contamination on a number of municipal water supply wells, thus affecting the available pumping capacity from some municipal wells. While perchlorate impacts on a few wells do not preclude the ability to pump groundwater in accordance with existing water supply plans, activities to characterize the contamination, and ultimately to control it and treat it, have been initiated in order to return the impacted wells' pumping capacity to water supply service. Primary Element 8 is included in this Plan to formalize the addressing of groundwater contamination issues in the basin. Concern has also been expressed that groundwater development in the basin will adversely impact the quantity and/or quality of surface flows leaving the basin via the Santa Clara River. Such concern extends to the potential impact on groundwater in the next downstream basin, the Piru Basin in Ventura County. While there are no established provisions regarding surface flows out of the Santa Clara River Valley East subbasin, Primary Element 2 is included in this Plan to formally address the monitoring and management of surface water flows and quality within, and flowing out of, the basin. Some work is already ongoing related to this area of concern via a Memorandum of Understanding (MOU) among CLWA, other purveyors within CLWA's service area, and United Water Conservation District, which manages surface water and groundwater in the downstream basins on the Santa Clara River in Ventura County. That cooperative effort, which is incorporated into this Plan via Primary Element 9, includes integration of databases, development of a numerical groundwater flow model, and interpretation and reporting on surface water and groundwater conditions. A third expressed concern in the basin, although never substantiated, is that groundwater is already overdrafted. Associated with that expressed concern is a related issue that reliance on overdrafted groundwater results in an overstated water supply in the basin. As discussed earlier in this Section, long-term groundwater levels, storage, and quality all indicate a lack of overdraft. As also discussed above, the importation of supplemental surface water over the last 23 years, References to the Urban Water Management Plan (UWMP). The UWMP of 2000 contains incorrect information and is under legal attack for correction. The UWMP does not address the total interruption of the state water supply in the event of drought, earthquake, or Delta problems. It is suggested that the UWMP not be utilized or referred to until its contents have been corrected to reflect accurate and truthful information. 32,000 afy. The history and trend of municipal groundwater use in the basin are illustrated in Figure 4-1. As noted above, until 1980, all water supply in the basin was from local groundwater. Imported surface water was first available from the State Water Project (SWP) in 1980, when a total of 1,125 af were imported into the basin. Since then, importations of SWP water have increased in two separate steady trends, interrupted by a notable decrease at the end of, and following, the 1987-1992 drought period: a steady increase beginning in 1980, to about 21,600 afy in each of 1989 and 1990, followed by a substantial decrease, to less than 8,000 af in 1991, and then a steady increase back to about 21,000 afy in 1997 and 1998, followed by further increases to about 35,000 af in 2001. The history and trends in importation of SWP water to the basin are illustrated in Figure 4-2, which also illustrates the historical trends in groundwater pumping and total water use in the basin since the importation of SWP water. In the context of this groundwater management plan, the historical utilization of imported SWP water to augment local groundwater represents the initiation of conjunctive use of surface water and groundwater supplies, a groundwater management principle which is intended to be continued via adoption of Primary Element 5 of this plan. #### Projected Water Requirements Detailed projections of municipal water requirements were most recently completed as part of the Urban Water Management Plan prepared by CLWA and the municipal water purveyors (Newhall County Water District, Santa Clarita Water Company, and Valencia Water Company) in 2000. Those projections, which are forecast for a 20 year period, also recognize an ongoing but decreasing agricultural water demand over the same period, from about 15,000 afy in 2005 to about 7,000 afy by 2020. The municipal water demand projections in the Urban Water Management Plan were derived from utilization and interpretation of multiple projection methods, including Per-Capita Water-Use applied to population projections; extrapolation of number of service connections (using two different projection techniques, an average rate and an accelerated rate projection) applied to the rate of service connection additions since 1990; and land use projections combined with unit water use factors on multiple land use categories (urban, including residential, commercial, industrial and recreational; irrigated agricultural; and vacant and open space). The water demand projections in the Urban Water Management Plan also considered weather effects (variations due to hot-dry years vs. cool-wet years) and conservation Dunn, page 7 References to the Urban Water Management Plan (UWMP). The UWMP of 2000 contains incorrect information and is under legal attack for correction. The UWMP does not address the total interruption of the state water supply in the event of drought, earthquake, or Delta problems. It is suggested that the UWMP not be utilized or referred to until its contents have been corrected to reflect accurate and truthful information. 32,000 afy. The history and trend of municipal groundwater use in the basin are illustrated in Figure 4-1. As noted above, until 1980, all water supply in the basin was from local groundwater. Imported surface water was first available from the State Water Project (SWP) in 1980, when a total of 1,125 af were imported into the basin. Since then, importations of SWP water have increased in two separate steady trends, interrupted by a notable decrease at the end of, and following, the 1987-1992 drought period: a steady increase beginning in 1980, to about 21,600 afy in each of 1989 and 1990, followed by a substantial decrease, to less than 8,000 af in 1991, and then a steady increase back to about 21,000 afy in 1997 and 1998, followed by further increases to about 35,000 af in 2001. The history and trends in importation of SWP water to the basin are illustrated in Figure 4-2, which also illustrates the historical trends in groundwater pumping and total water use in the basin since the importation of SWP water. In the context of this groundwater management plan, the historical utilization of imported SWP water to augment local groundwater represents the initiation of conjunctive use of surface water and groundwater supplies, a groundwater management principle which is intended to be continued via adoption of Primary Element 5 of this plan. #### Projected Water Requirements Detailed projections of municipal water requirements were most recently completed as part of the Urban Water Management Plan prepared by CLWA and the municipal water purveyors (Newhall County Water District, Santa Clarita Water Company, and Valencia Water Company) in 2000. Those projections, which are forecast for a 20 year period, also recognize an ongoing but decreasing agricultural water demand over the same period, from about 15,000 afy in 2005 to about 7,000 afy by 2020. The municipal water demand projections in the Urban Water Management Plan were derived from utilization and interpretation of multiple projection methods, including Per-Capita Water-Use applied to population projections; extrapolation of number of service connections (using two different projection techniques, an average rate and an accelerated rate projection) applied to the rate of service connection additions since 1990; and land use projections combined with unit water use factors on multiple land use categories (urban, including residential, commercial, industrial and recreational; irrigated agricultural; and vacant and open space). The water demand projections in the Urban Water Management Plan also considered weather effects (variations due to hot-dry years vs. cool-wet years) and conservation Dunn. Page 8 Top "Local Groundwater" The statement is made: "That for all practical purposes the Saugus Aquifer underlies the entire CLWA service area". That statement is absolutely false! It does not! Please correct. Bottom paragraph: Supplemental (SWP) Surface Water #### CLWA's SWP Water Entitlement The CLWA, indeed, has purchased water in addition to the original Table A entitlement, but cannot obtain contractual agreement to transport the additional water to the Santa Clarita Valley. water and possibly some water supply derived from water transfers and desalination outside the basin. Local Groundwater - Local groundwater has historically been developed from the two aquifers that comprise the groundwater basin, the Alluvium that underlies the Santa Clara River and its tributaries, and the Saugus Formation that underlies, for all practical purposes, the entire CLWA service area. Those two aquifers, and the groundwater basin they comprise, are the focus of this groundwater management plan. Based on historical experience and observation of groundwater conditions, it is currently expected that ongoing utilization of local groundwater will continue to be in amounts that are generally comparable to what has historically been pumped, 30,000 to 40,000 afy from the Alluvium and 7,500 to 15,000 afy from the Saugus Formation. It is also
expected that there is some additional development potential in the Saugus Formation, in the range of 10,000 to 20,000 af which might be intermittently extracted during one or more dry years when supplemental imported water might be reduced. Ultimately, it is expected that local groundwater will continue to be a component of water supply, at appropriate production levels in both aquifers, in the basin. The intent of this groundwater management plan is to ensure that ongoing utilization of local groundwater continues to result in acceptable aquifer conditions, i.e. avoidance of overdraft (Primary Plan Element 3), no degradation of quality (Primary Plan Element 6), no adverse impacts to surface waters (Primary Plan Element 2), all via continuation of conjunctive use operations that have been ongoing since the initial importation of supplemental surface water in 1980 (Primary Plan Element 5) and via monitoring and interpretation of surface water and groundwater conditions on an ongoing basis (Primary Plan Elements 1 and 2). Supplemental (SWP) Surface Water - CLWA has a contractual Table A amount of 95,200 af of water from the SWP. CLWA's original contract, signed in 1963, was for 23,000 af; that Table A amount was later increased to 41,500 af. In 1988, CLWA purchased a Table A amount of 12,700 af from Devil's Den Water District, and it acquired another Table A amount of 41,000 af in 1999 from Kern County Water Agency and its member district, the Wheeler Ridge-Maricopa Water Storage District. There is ongoing CEQA-related litigation over the most recent acquisition of the additional SWP Table A amount, the 41,000 af acquired from Kern County Water Agency and Wheeler Ridge-Maricopa WSD. However, there has been no invalidation of the completed agreement to transfer the 41,000 af Table A amount to CLWA; and current water supply planning includes that Table A amount as CLWA corrects the CEQA technicality by preparing a new EIR to address the environmental consequences of the transfer. Top: Recycled Water It should be noted CLWA's planned recycle water program is and has been for one private business only. No public agency is receiving or is planned to receive recycled water from CLWA. Recycled Water - In 1993, CLWA prepared a draft Recycled Water System Master Plan that outlined a multi-phase program to integrate recycled water into the overall water supply system in the basin. Construction has begun on Phase I of that project, which will deliver approximately 1,700 afy, and deliveries are expected to begin in 2003. Overall, recycled water is expected to ultimately reclaim up to 17,000 afy of treated waste water suitable for irrigation use on golf courses, landscaping, and other non-potable uses. Dunn, page 10 Top: Number 7 should read: <u>Valleywide</u> integration of recycled water. Middle: Secondary (Potential Elements) Item #2 Change to: involvement in land use planning per Water Code 10753.7 (l). - 4. Development of Regular and Dry Year/Emergency Water Supply - 5. Continuation of Conjunctive Use Operations - active and passive groundwater recharge - 6. Long Term Salinity Management - 7. Integration of Recycled Water - 8. Identification and Mitigation of Soil and Groundwater Contamination - involvement with other local agencies in investigation, cleanup, and closure - 9. Development and Continuation of Local, State and Federal Agency Relationships - 10. Groundwater Management Reports #### Secondary (Potential) Elements - 1. Continuation of Public Education and Water Conservation Programs - 2. Identification and Management of Recharge Areas and Wellhead Protection Areas - involvement in land use planning process - 3. Identification of Well Construction Abandonment, and Destruction Policies - water quality protection - manage vertical distribution of pumpage - 4. Provisions to Update the Groundwater Management Plan #### Primary Element 1 - Monitoring of Groundwater Levels, Quality, and Production Prior to 1980, all water supply in the Upper Santa Clara River Area was developed from local groundwater; since 1980, imported surface water has become an increasing component of overall water supply in the area, but groundwater continues to meet all agricultural water demand and a significant part of municipal water demand. As a result of the long term development and use of groundwater in the area, there is a fairly substantial amount of historical groundwater level data, and a useful amount of groundwater quality data, and groundwater pumping data that has been collected in the basin. All the available historical groundwater level, quality, and pumping data have been organized into a computerized data base for the Upper Santa Clara River Area. That data base, while separate, has been coordinated with an equivalent data base maintained by United Water Conservation District for the downstream basins on the Santa Clara River. The intent of database coordination has been to facilitate interpretation and reporting on groundwater and other water resource related issues by the respective agencies overlying the various basins along the River. Dunn, page 11 Bottom: As stated earlier the UWMP is inacurate and under legal attack-and not certified by the courts. Primary Element 4 – Development of Regular and Dry Year/Emergency Water Supply 40,000 acre feet from the aluvium and 15,000 a/f from the Saugus is optimistic. We strongly suggest developing an emergency plan for an extended interruption of the state water project. How many times must we ask for such an obvious safeguard? conditions (and associated fluctuations in recharge and pumping). Such fluctuations are typical of groundwater basin conditions in any conjunctive use setting, such as in this basin: groundwater is utilized from storage during dry years, or dry periods, and that storage is replenished during alternate wet years, or periods. The observation of these historical groundwater conditions, in combination with knowledge of pumpage from both the Alluvial and Saugus Aquifers, has led to current operational practices as well as general expectations regarding the approximate yield of the local groundwater system as discussed in this plan. While historical operating experience, complemented by observed groundwater conditions, is an appropriate basis for generally planning for available groundwater supplies, it is possible and appropriate to more precisely analyze the basin to determine values or ranges of yield under varying hydrologic conditions, and to assess the impacts of various management actions that might be implemented in the basin. The MOU process described in Primary Element 9 of this Plan includes the development of a numerical groundwater flow model which is intended to be utilized for determination of the yield of the basin under existing land use and under existing groundwater and surface water development conditions. It is also expected to be used for implementation of this Plan Element in order to assess the yield of the basin under future land use conditions as well as future ranges of surface water importation, groundwater development, and recycled water use through varying hydrologic conditions, i.e. wet and dry periods that affect the availability of imported surface water. The ultimate intent of this Plan Element is to develop an understanding and quantification of the yield of the basin, under varying hydrologic conditions and developing local cultural conditions, in order that groundwater development and use be managed in such a way to meet an appropriate fraction of total water demand while avoiding levels of groundwater use that would result in overdraft conditions. Thus, implementation of this Plan Element is essential to accomplishing the first and second management objectives (goals) for the basin. #### Primary Element 4 - Development of Regular and Dry Year/Emergency Water Supply The most recent updated Urban Water Management Plan (UWMP, December 2000) prepared by CLWA and the other purveyors in the basin (Newhall County Water District, Santa Clarita Water Company, and Valencia Water Company) includes plans to develop 30,000 to 40,000 acre-feet per year (afy) from the Alluvial aquifer and 7,500 to 15,000 afy from the Saugus Formation in average/normal years. Both ranges of numbers are consistent with recent historical pumping that The SWP water received in 1991 is erroneous. The chart indicates 8,000 a/f. It is incorrect. CLWA only received 10% of its then allocation 54, 200 a/f. The 10% was received in January and the plant shut down in March. See Exhibit A. It should be noted that this is a state water project interruption for months, not a reduction. Figure 5-4 Historical and Projected Water Use Upper Santa Clara Valley Groundwater Basin Dunn, page 13 Top paragraph: There is no mention what the folks can do if groundwater cannot meet demand and the supplemental water is not there for an extended period of time. Please develop a plan to solve this most serious occurance. Conjunctive use of local groundwater and imported surface water will continue to be a key element in meeting all the goals for the basin, most notably utilizing groundwater for water supply without overdrafting the basin. Historical experience with groundwater pumping and aquifer response to varying hydrologic conditions has shown that the groundwater basin can support notable variations in pumping during wet and dry periods, but it cannot support continuous pumping at rates high enough to meet total local water demand. Thus, utilization of imported surface water in conjunction with local groundwater will be essential to the management of groundwater for water supply without overdrafting that resource. As part of conjunctively using surface water and groundwater, it is recognized that, particularly when the surface water supply is imported from the State Water Project, there will be variations in the amount of available surface water supply from year to year. Similarly,
there are expected to be variations in local groundwater conditions as a function of local hydrologic conditions which affect, among other things, the natural recharge to the groundwater basin from year to year. In the case of this basin, local (Southern California) hydrology which affects local groundwater conditions may not necessarily be the same as the hydrology in a distant (Northern California) location that directly affects the availability of supplemental, imported surface water in any given year. Thus, conjunctive use management is challenging, but is notably important to ensure that the groundwater basin is maintained to meet a regular component of water supply and to also be able to meet a larger component of water supply during "dry periods" that affect supplemental surface water availability. Conjunctive use management is similarly important to ensure that local groundwater can be replenished, via reduced pumping and/or as a result of wetter local hydrologic conditions, during periods of wet/normal surface water availability. In light of all the preceding, implementation of this Plan Element is essential to accomplishing all the management objectives (goals) for the basin. #### Primary Element 6 - Long Term Salinity Management In general, groundwater quality in the basin is such that groundwater supplies meet standards for beneficial use in the basin, most of which now is for municipal (domestic) use but some of which remains for agricultural and some other irrigation (non-domestic) use. There also have been no notable historical trends of groundwater quality degradation in the basin over time. However, a number of geologic and hydrologic factors suggest that observations and interpretation of groundwater quality warrant some focus to ensure long-term preservation of groundwater quality. Notable among those geologic and hydrologic factors are: 1) the largely "closed" geologic nature Dunn, page 14 Bottom of page: Is appears the entire paragraph is false. There is no knowledge of such meetings occurring. Newhall County Water District, Los Angeles County Waterworks District No. 36, Valencia Water Company, and its own Santa Clarita Water Division. As such, CLWA has a historical and ongoing working relationship with all those local agencies, as well as with other local groundwater pumpers, to manage water supplies in order to effectively meet water demands within the available yields of imported surface water and local groundwater. In fact, the Advisory Council convened to assist in the preparation of this Plan is comprised representatives of all the local water purveyors and significant groundwater pumpers. A local MOU process among CLWA, other purveyors within CLWA's service area, and United Water Conservation District in neighboring Ventura County is a classic illustration of a local agency relationship that has produced the beginnings of local groundwater management, now embodied in this comprehensive plan, most notably in Primary Elements 1 through 5. In 2001, out of a willingness to seek opportunities to work together and develop programs that mutually benefit the region as well as their individual communities, those agencies prepared and executed a Memorandum of Understanding (the MOU) that initiated a collaborative and integrated approach to several of the aspects of water resource management that are now included in this Plan. United WCD manages surface water and groundwater resources in seven groundwater basins, all located in Ventura County, downstream of the East Subbasin of the Santa Clara River Valley that is the focus of this Plan. United is thus a logical partner in the cooperation of management efforts to accomplish the objectives (goals) for this basin, particularly as they relate to preservation of surface water resources that flow through the respective basins. As a result of that MOU, the cooperating agencies have integrated their database management efforts (part of Primary Elements 1 and 2 of this Plan), have initiated the development of a numerical groundwater flow model (for utilization in Primary Elements 3, 4 and 5 of this Plan), and are continuing to prepare reports on the status of basin conditions, as well as on geologic and hydrologic aspects of the overall stream-aquifer system. A local extension of the interaction among CLWA, the retail water purveyors, and United is an ongoing working relationship with the City of Santa Clarita. CLWA and the municipal purveyors meet regularly with City staff and also present water supply conditions via study sessions with the City Council on a regular basis. It is expected that the implementation of this Plan will result in the availability of a broader range of information transfer with the City relative to the existing and future water supply to its residents. This Primary Element is included in this Plan to formalize the historical local and state agency Dunn, page 15 Middle: Primary Element 10-Groundwater Management Reports These secretly created reports contain erroneous numbers to overstate supply and understate demand. The creators meet secretly, allow no public participation or oversight and meet without authority or sanction from any public agency. The meetings are held secretly and without benefit of the Brown Act. Since these reports are created with no public oversight, do not appear to have credibility, and usually are not signed by anyone, they should not be included as part of an AB3030 groundwater management plan. It is time to form an official joint powers authority between the purveyors and other participating parties. working relationships as part of comprehensively managing local groundwater, in concert with imported surface water and local recycled water, to accomplish all the management objectives (goals) for the basin. ### Primary Element 10 - Groundwater Management Reports As briefly described in the Introduction of this Plan, local groundwater management planning already includes, among several other activities, analysis of groundwater conditions and preparation of annual reports on groundwater and all other aspects of water resources and water supplies in the Santa Clara River Valley East ground water basin. In addition, recently formalized cooperative work with neighboring United Water Conservation District includes both regular reporting on the status of groundwater conditions and specific reporting on geologic and hydrologic aspects of the overall stream-aquifer system. For example, documentation of the numerical groundwater modeling work currently in progress is expected to be the first of the latter reports in the next year. Beginning in 1998, CLWA and the retail water purveyors in the basin have prepared a series of annual reports, known locally as the Water Report, to describe all aspects of water supply and water resource conditions in the basin. That report provides current information to local City and County land use agencies, and to other interested parties, about current water requirements, use of groundwater and treated imported surface water to meet those water requirements, groundwater conditions (pumping, groundwater levels and quality, etc.), local surface water conditions, the status of imported surface water supplies including details of delivered SWP water in the reported year as well as an up-to-date summary of available imported SWP water for the next year, a short-term projection of water requirements in the next year, and other appropriate details about water requirements and supplies such as, for example, the status of introducing recycled water as a component of non-potable water supply. In light of the frequency and comprehensive nature of the annual Water Reports, and also in light of the planned preparation of more detailed technical reports on various aspects of the basin as appropriate, the continued preparation of those reports will serve as regular and complete reporting on all aspects of this groundwater management plan. (Not much truth on this page.) CLWA constantly preaches conservation but continually sells more and more water. CLWA should provide the public with an accounting of the water CLWA is conserving. ## Secondary Element 1 - Continuation of Public Education and Water Conservation Programs CLWA has provided water conservation and public education programs that will continue and expand as a complement to and an element of this groundwater management plan. The expansion of water conservation will largely stem from CLWA's having signed the "Memorandum of Understanding Regarding Water Conservation in California" (Urban MOU) in 2001, which made CLWA a wholesaler member of the California Urban Water Conservation Council. CLWA has thus committed to implementation of cost-effective water conservation measures known as Best Management Practices (BMPs) that are included in the Urban MOU and are intended to reduce California's long-term urban water demands. The BMPs have been incorporated into the water demand management measures section of the Urban Water Management Planning Act. Water conservation and related public education measures have generally been developed in California to achieve the following goals: - meet legal mandates - reduce average annual potable water demands - reduce sewer flows - reduce water demands during peak seasons - meet drought restrictions. As a wholesaler of imported surface water CLWA has implemented the following BMPs for several years prior to signing the MOU: - distribution system water audits, leak detection and repair - public information - school education - wholesale agency assistance \$\frac{1}{2} - conservation pricing Z - conservation coordinator. Top: (Not much truth here either.) Mostly deception. The UWMP doesn't exist for the reasons mentioned earlier. The UWMP must not be considered here. As a signatory to the MOU, CLWA's water conservation and public education program will expand to include the following BMPs found to be
locally cost-effective, as detailed in the 2000 Urban Water Management Plan for CLWA and the Santa Clarita Valley retail purveyors. - water survey programs for single-family residential and multi-family residential programs - residential plumbing retrofits - metering with commodity rates for all new connections and retrofit of existing connections - large landscape conservation programs and incentives - high-efficiency washing machine rebate programs (when also provided by local energy providers or wastewater utilities) - conservation programs for commercial, industrial, and institutional accounts - wholesale agency programs to financially or otherwise support water conservation efforts by retailers (this measure will be expanded) - residential ultra-low-flow toilet replacement program. This Primary Element, while identical to independent CLWA efforts in water conservation and public education, is incorporated in this Plan to complement other Plan elements, and to move toward accomplishment of all management objectives (goals) for the groundwater basin. ## Secondary Element 2 - Identification and Management of Recharge Areas and Wellhead Protection Areas The 1986 Amendments to the federal Safe Drinking Water Act (SDWA) established a new Wellhead Protection Program (WPP) to protect groundwater that supplies drinking water wells for public water systems. Each state was required to prepare a WPP and submit it to the USEPA by June 19, 1989. However, California did not develop an active state-wide Wellhead Protection Program at that time. Subsequently, in 1996, reauthorization of the SDWA established a related program called the Source Water Assessment Program. In 1999, the California Department of Health Services (DHS) Division of Drinking Water and Environmental Management developed its Drinking Water Source Assessment Program (DWSAP), and EPA approved it. The overall objective of the DWSAP is to ensure that the quality of drinking water sources is protected. As discussed in Section 1 of this Plan, the potential groundwater management plan component ## Santa Clarita will turn to wells as state water supplies dry up WATER / From Page 1 and Hasley Canyon — does not have a ground-water supply. The county agency has drilled a well about 1,000 feet northwest of the intersection of Hasley Canyon and Del Valle roads that it had planned on using in about a year after building a 250,000-gallon storage tank, Assistant Deputy Director Gary Hartley said. However, with the new cutback, the county is hurriedly seeking permission from several property owners to run a temporary pipeline from that well to customers, Hartley said. County officials hope to have the pipeline operating in about six weeks, he said. Meanwhile, the county is working on agreements with the three other purveyors in the valley — the public Newhall County Water District and the private Valencia Water Co. and Santa Clarita Water Co., Hartley said. If the county cannot set aside enough well water from the other purveyors, there is a chance the state would send emergency supplies through the Castaic agency, he While the city considers a law that would restrict wasteful practices in the hopes of achieving a 25 percent reduction in water use, Hartley said that county water officials are drafting a conservation proposal that would require different levels of participation in different areas. Because of the severity of the water cuts in the Val Verde and Hasley Canyon areas, he said he would expect a 20 percent to 30 percent mandatory cutback in water use. Although the plant near Castaic Lake will be closed, the agency most likely will lay off just a temporary maintenance worker, Sagehorn said. The worker was hired when one of the two permanent maintenance workers was on medical leave and was kept on. # **Suppliers** driven into the ground Drought forces area to rely on well water By Kimberly Heinrichs Daily News Staff Writer SANTA CLARITA — The state is expected to stop water deliveries March 15 to the Santa; Clarita Valley, forcing the area to rely on ground water as California's worst drought on record continues, officials said Tuesday. The Castaic Lake Water Agency, which treats, stores and distributes state water to local after the last of the imported purveyors, will Conservation close its plant law gets OK. Related story: water arrives, agency General Manager Robert Sagehorn said. "For all substantial purposes we're shutting the plant down on March 15," he said, adding, "No one's going to go bone dry over this." Local water suppliers still will pump water from the Santa Clarita Valley's extensive network of wells, he said. The state Department of Water Resources told Sagehorn on Saturday that the expected cut of 50 percent of the agency's water supply has been increased to 90 percent as the drought continues its fifth year. The agency will have received 10 percent of this year's water allocation by the middle of March, Sagehorn said. Of the four purveyors receiving state water from the Castaic Lake agency, only the Los Angeles County Waterworks District No. 36 — which serves Val Verde : See WATER / Pg. 2 # Officials say state's water delivery system inadequate By Laura Myers Associated Press MONTEREY, Calif. — The tap has run dry too often and for too many years in California because of an inadequate water delivery sys-tem, representatives of the three main groups vying for the precious commodity complained Thursday. The 5-year-old drought that saw everybody suffer when supplies were drastically cut only magnified the problem this year, said repre- sentatives of the urban, agriculture annual spring conference of the weren't the first in line for water if and wildlife interests. "The biggest problem we have is Agencies, which attracted more ty of urban life will decline, farms that the reliability of the water sup- than 2,000 of the state's top water will go under, workers will be job by is grossly inadequate," said Tim officials. way the system works now, you just ment, agreed with Quinn that the they said water officials must imcan't count on a steady water sup. State Water Project and the federal prove the delivery and storage syspip because the water delivery sys. Central Valley Water Project and tem that teen that sesentially hasn't develtem just doesn't work like it satisfy competing supply needs. Oped for decades, should." "We shouldn't have to continue Quinn's comments came at the tures of what would happen if they to fight one another for resources," and widdite interests. "The biggest problem we have is Agencies, which attracted more than the reliability of the water supply is grossly indequate," said Tim officials. Quina, conservation director for letture, and Charles Hanson, repretented Southerne California. "The senting widdlife and the environway the system works now, you just ment, agreed with Quinn that the can't count on a steady water sup-State Water Project and the federal very system, is a bottleneck even in non-drought years, Quinn and Hall some species becoming extinct. But beyond the growing instant Part of the problem, according to Hanson, who has an environmental consulting business, is the growing importance on protecting endan-gered and threatened species while making water transfers in the delcompetition for scarce supplies, they said water officials must im-prove the delivery and storage sys-tem that essentially hasn't devel- California Farm Water Coalition. already is listed by state and federal The Sacramento-San Joaquin wildlife officials as threatened and Delta, the connerstone of the deli- the delta small allows were wellow in a new lates. the delta smelt also is expected to make the U.S. Fish and Wildlife Certain water flow rates from the Service list soon. river must be met when those fish spawn, under wildlife protegtion rules, he said. tions to provide adequate water throughout the year," Hanson said. "We need to manage the alloca- # A boost for toxic cleanup in state ## Feds back state on perchlorate By Heather MacDonald Staff Writer 8-8-03 D. N. SANTA CLARITA — The Department of Defense agreed Thursday to obey California's drinking water standards for perchlorate and not try to avoid paying for cleanup of the toxic rocket fuel byproduct. The agreement, announced by U.S. Sen. Barbara Boxer and Pentagon officials during a visit to a contaminated site in Rialto, could help speed the cleanup of the defunct Bermite explosives factory in the center of Santa Clarita, and dozens of other polluted sites all over California, officials said. "This is an important break-through," said Boxer, a California Democrat. "Defense Department activities have been a major source of perchlorate contamination in California. This kind of active cooperation will help us find and fix perchlorate problems throughout the state." The agreement also appeared to put to rest concerns expressed by Santa Clarita leaders that legislation introduced by President George W. Bush would exempt some defense contractors from having to pay for environmental cleanups in the name of military readiness. The Newhall County Water District Board of Directors was afraid the language of the bill could be used to let Whittaker Corp., which operated the site until 1987 and has recently begun studying the best ways to clean up the pollution, off the hook. "The well-being of millions of Californians depends on this agreement," Boxer said. More than 7 million Californians drink water with at least traces of perchlorate, which can damage the thyroid gland and be risky for pregnant women, whose fetuses can be affected, according to the U.S. Environmental Protection Agency. A provisional standard set by the EPA recommends that drinking water have no more than 1 part per billion of perchlorate. The old standard considered water with 32 parts per billion of perchlorate safe. Although the EPA is not expected to set a final standard See WATER / Page 2 # Help on the way for toxic
cleanups WATER / From Page 1 until at least 2008, Boxer has called for the agency to act next year because of the threat perchlorate poses to California residents. Five wells in Santa Clarita have been shut down because of high levels of perchlorate, with tests showing as much as 40 parts per billion of the toxin in the water, officials said. The wells draw on the Saugus Aquifer, which serves as a backup water supply for the Santa Clarita Valley in times of State officials believe the pollution is coming from the Bermite property near the Santa Clarita Metrolink Station on Soledad Canyon Road. From World War II to the end of the Cold War, several companies manufactured and tested munitions and explosives for the U.S. military on the 996-acre site. While the California Department of Health Services requires that wells with more than 4 parts per billion of perchlorate be shut down, the state Office of Environmental Health Hazard Assessment has found that water with as much as 6 parts per billion is safe to drink. Heather MacDonald, (661) 257-5257 heather.macdonald@dailynews.com ----Original Message---- **From:** Diane Trautman [mailto:dianetrautman@comcast.net] Sent: Friday, August 08, 2003 2:41 PM To: Dan Masnada Cc: Marsha McLean; Vince Bertoni Subject: Draft Groundwater Management Plan TO: Dan Masnada RE: Draft Groundwater Management Plan Following are my questions and comments related to the Agency's Draft Groundwater Management Plan: - 1. What percentage of the 106,000 afy (needed over the next 20 years) will be drawn from local groundwater sources? Does the Agency expect to maintain roughly the same 60% SWP/40% local groundwater mix in most years? - 2. If the Saugus Formation absorbs recharge much more slowly than the Alluvial Aquifer, won't pumping of the Alluvial Aquifer at the high end of the scale over a sustained period of time reduce recharge of the Formation and reduce the amount of potable water that can be drawn from the Formation in dry periods? - 3. Both this report (p. 15) and the 2002 Water Report (p. 19) state that the Agency does not have sufficient groundwater quality data on the Saugus Formation to perform an analysis of "pumping related inpacts on quality." On page 25 of this report under Primary Element 1, the Agency states that it has "a useful amount of groundwater quality data." Is the latter in reference only to the Alluvial and not the Saugus? And if the Agency does not have sufficient data on quality of water from the Saugus Formation, how does the agency propose to collect that data to ensure quality in order to maintain the current pumpage level and to increase the yield as proposed on page 21? - 4. Looking back at the 2002 Water Report, the Agency indicates (on page 19) that "there are limited Saugus (Formation) water level data." Does the Agency plan to collect more comprehensive data on the Saugus Formation general groundwater stability to determine reliability of projected yields and "artificial groundwater recharge" (p. 27) capacity? - 5. Regarding Secondary Element 2, the Agency states: "The results of the DWSAPs can be used as a planning tool to guide land use development in the vicinity of water sources." Is the Agency currently sharing more recent, detailed information with the City regarding contamination risks in relation to the existing closed wells? - 6. Where is the SCWC Stadium Well located? - 7. Why is "Continuation of Public Education and Water Conservation listed as a Secondary (Potential) Element" when increased conservation savings are projected to reduce water demand by 10%? Shouldn't conservation be one of the primary elements of water management? - 8. How is the Agency delivering recycled water to the TPC? Is it being run through a parallel piping system? Is so, what is the estimated cost and time frame for constructing such a system to carry the estimated 17,000afy? And how does the Agency propose to pay for this system? - 9. How is the recycled water in locations, such as the golf course, reprocessed to remove pesticides and fertilizers? - 10. What is the current average per capita water usage in afy? 11. The Semitropic Water Bank/Transfer is not mentioned in discussion of the Supplemental (SWP) Surface Water on page 21. Is that because it is a relatively short-term water supply? Are any of the other water transfers — Kern Water Bank, Kern Delta Water, North Las Posas Water Bank — as listed on UWMP p. 2-16, of limited duration? And if the Semitropic Water Bank Transfer is short term, how can it be included in the 105,000-106,000 afy need projected for the next 20 years? What will take its place? 12. What specific efforts will be made to manage salinity? Thank you for giving me an opportunity to respond. Diane Trautman ### Responses to Trautman 1. In terms of groundwater management planning, projected urban water demand (the 106,000 afy projected urban demand in 2020) does not represent total valley-wide demand; total projected demand is 113,100 afy, including both urban and agricultural. In that light, on an average basis, local ground water is expected to be utilized to meet about 40 percent of total water demand. In regards to maintaining "roughly the same 60% SWP/40% local groundwater mix in most years", please refer to page 20 of the draft GWMP for a more complete response to your question. For example, about 54 percent of water demand in 2001 was supplied by local groundwater, and about 46 percent was supplied by imported SWP water. Also please refer to Table II-5 in the 2002 Santa Clarita Valley Water Report, which displays the build up of SWP water use through time, and the relative percentages of groundwater and SWP water used in a given year. As noted above, it is expected that, over time, again on an average basis, the annual amount of local groundwater pumping will not appreciably change but its fraction of total water supply will decrease. Conversely, over time, and once again on an average basis, both the annual volume of imported SWP water and its fraction of total water supply will increase. 2. No. Since the Saugus Formation is recharged over a much larger area, beyond the spatial extent of the Alluvium. There is a limited relationship between Alluvial pumping and recharge to the Saugus Formation. The fundamental tenet of the GWMP is to utilize groundwater for water supply within its sustainable yield (see the Management Objectives, or Goals, for the Basin, GWMP Section II; see also the various GWMP Elements intended to achieve those objectives, GWMP Section V). In that light, it is expected and intended to operate in such a way that recharge to the Saugus Formation will not be "reduced" by pumping from the Alluvial Aquifer and that groundwater will be available in varying amounts, as needed depending on weather year-types, within the sustainable yields of the respective aquifers (i.e. without overdrafting them). 3. The reference to "useful amount of groundwater quality data" in the GWMP includes both Alluvial and Saugus data. However, due to the historically greater development and use of groundwater from the Alluvium (number and distribution of wells, volume of pumping), and due to the historically smaller development and use of the Saugus Formation (fewer wells, smaller geographical distribution of wells, smaller pumpage), there is a comparatively limited ability to examine relationships among pumping, recharge, and quality in the Saugus. CLWA and the other purveyors intend to expand the overall knowledge of the Saugus Formation as that resource is further explored and developed (number of wells, additional sampling as new wells are added, etc.). All that data will be included in ongoing implementation of GWMP Primary Element 1, Monitoring of Groundwater Levels, Quality, and Production. - 4. The "limited nature of Saugus water level data" is a result of the same smaller extent of historical Saugus development described in the preceding answer. Acquisition of additional data on the Saugus Formation is planned as also described in the preceding answer. - 5. All publicly available information regarding the investigation of perchlorate contamination, its extent, its impact on water supply, and plans for cleanup, control of migration, etc. is available to the City. Representatives of CLWA and the purveyors meet routinely with City representatives to review the status of perchlorate cleanup and remediation activities. CLWA and the impacted water purveyors will continue to pursue control and cleanup of perchlorate contamination in order to restore impacted groundwater pumping capacity and to ensure the long-term quantity and quality of groundwater in accordance with the GWMP. As a practical matter, there are no surface contamination risks relating to perchlorate that would affect land use development adjacent to the wells. - 6. The stadium well is located on the south side of the Santa Clara River, approximately two miles upstream (east) of its confluence with the South Fork tributary, or about 4,000 feet east of the Bouquet Canyon Road crossing of the Santa Clara River. - 7. The assignment of "primary" or "secondary" status to any GWMP element is discretionary and certainly not absolute. Secondary status is not intended to indicate that any element of the GWMP will not be implemented; all elements are intended to be implemented. Final status of all GWMP elements will be reviewed by the Advisory Council and decided by the CLWA Board. - 8. Recycled water is being delivered to the TPC via the dedicated, recycled water distribution system, which is also capable of delivering water to other non-potable water users, and which will be expanded in accordance with the Draft Recycled Water Master Plan. The costs and time frame for expanding recycled water distribution and use are included in the Draft Recycled Water Master Plan, which is complementary to, but beyond the scope of the Groundwater Management Plan. The intent is to develop the 17,000 AFY
of use by 2020. The capital cost of the complete system is estimated to be \$68 million, and will be funded through CLWA's connection fee program. - 9. Recycled water is not "reprocessed" at points of use such as the TPC golf course. In general, recycled water is highly treated (tertiary treated) waste water. In the case of the Santa Clarita Valley, treatment already occurs at the Valencia Reclamation Plant operated by the Sanitation Districts of Los Angeles County. The treated water, ready for non-potable use, is distributed from the plant site in a dedicated transmission pipeline system to end users such as the TPC. Pesticide and fertilizer uses, as part of cultural practices at end-user locations such as golf courses, are discretionary actions of the respective end users of recycled water. - 10. Most water agencies no longer use "per capita" water use as a standard because it is not an accurate representation of actual per person water use, mainly due to the effects of landscape and commercial/industrial water use. (It is also expressed in "gallons per day," rather than "acre-feet per year, since it refers to individual water usage.") In general for the South Coast hydrologic region of California, water use is approximately 200 gallons per person per day (DWR Bulletin 160-98). Per capita use for the Santa Clarita Valley is slightly higher than this due to landscape irrigation demands caused by local climatic conditions. - 11. The SWP is referred to as "supplemental" water because that is the original purpose of the SWP: to serve as a supply that would "supplement" local supplies (whether groundwater or local surface water or both). The specific amounts referred to in the GWMP are from the contractual terms between CLWA and the California Department of Water Resources. The water banked in the Semitropic Water Storage Program during 2002 is a short-term, dry period supply. The program has a term of ten years (i.e., the water must be returned to CLWA for use in its service area within that time period). Thus it is not included as a supply for long-term needs. However, the other programs listed in the UWMP (most of which, by the way, are not water "transfers," but are instead groundwater banking programs) are long-term sources of supply. As of this writing, the Agency is in the process of designing and implementing a Long-Term Reliability Plan to begin bringing such long-term programs on line as a means to store water available in wet years, for use in later dry years. CEQA analysis, with its accompanying public comment opportunities, will be part of the long-term reliability program approval process. 12. Primary Element 6 – Long Term Salinity Management is included in the GWMP for the reasons presented in the text discussion of that element. The element recognizes the need to plan for salinity management but also recognizes that, to the present, there has been no extraordinary trend of salinity increase. Hence, there are no specific efforts currently in place to "manage" salinity. It is envisioned that specific efforts will be developed over time in response to implementation of the GWMP and, in particular, its Primary Element 6. CLWA is participating in efforts by the Sanitation Districts of Los Angeles County to address the Los Angeles Regional Water Quality Control Board's proposed TMDL standard for chloride in the Santa Clara River. This effort is separate from and beyond the scope of the Groundwater Management Plan. # **Additional Comments** Ed and Joan Dunn 15414 Rhododendron Dr. Canyon Country, CA 91387 November 25, 2003 Castaic Lake Water Agency President Peter Kavounas and Board of Directors 27234 Bouquet Canyon Road Santa Clarita, CA 91350-2173 Re: Groundwater Management Plan (AB 3030) Nov. 2003 Draft Dear President Kavounas and Directors: We would like to comment on some statements of your new draft plan. On page 38 there is a bullet - Conservation pricing. Since we have never seen any conservation pricing locally, this should be explained or removed. We seriously question this being presently implemented. On page 41, we ask why you are stating that only the eastern portion of the alluvium has experienced historical fluctuations in groundwater levels. How can there be constant groundwater levels in the western portion of the basin, when the western basin is supposed to receive its re-charge primarily from the eastern portion of the river? You imply that tributaries in the Bouquet Canyon area are the source of water in that area. We believe you are avoiding the real source of water to the area. That source appears to be the large amount of effluent from Sanitation District #26, and is maintaining the water level. Why is this not explained? As usual, there is no explanation for a total extended interrupt of the state wholesale water system or the CLWA facilities! We are disappointed that of the numerous comments of August 8, 2003 that we supplied, only a few were considered. We spent our time and efforts to supply comments and suggestions to make the water plan a good plan. So much for that! Sincerely. Ed and Ioan Dunn November 25, 2003 Mary Lou Cotton Water Resources Manager CLWA via fax only Subject: November 25, 2003 Groundwater Management Plan Protest Hearing I will not be attending the protest hearing this evening, but I do have three comments on the materials you provided to me. First, I commented previously on the proposed network of monitoring wells and the public availability of data. The monitoring wells in figures 5-1 and 5-2 appear to cover a wide range of the valley. However, the text on p. 27 states the network will be "mostly as illustrated in figures 5-1 and 5-2, but possibly expanded...." I hope the final network is extensive and covers all areas of the valley. Further expansion of the network would add valuable data points and should be encouraged. I did not see any indication of whether the collected monitoring data would be publicly available. I have heard comments from others that some well data is not being released to the public, even upon request. I think that concerned citizens and groups should be allowed access to the monitoring database. Second, I have one new comment on the wording on page 34, regarding perchlorate cleanup. The last paragraph states "the proposed pumping would be combined with approved wellhead treatment to render the treated water suitable for municipal supply." This may be a wording issue, but my understanding is that wellhead treatment is not always approved or allowed by the permitting agencies. This wording implies that wellhead treatment is already an approved scenario, while it may be determined that treatment followed by re-injection or non-potable usage makes more sense. I think it would be more accurate to not specify the final treatment scenario until the plume characterization is complete and the pilot studies are finished and accepted. Finally, the plan is clearly an overview that will have to be expanded upon with supporting policies and target dates. Some commenters requested this information go in the groundwater plan. If the agency does not add implementation strategies and target dates to the plan, they should be prepared separately, updated annually, and made available to the public upon request. I understand the time for commenting may have past, but if you are able to address these concerns in the final draft it would be appreciated. Sincerely Maria Gutzeit 24463 Shadeland Dr. Newhall, CA 91321